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Note

A trap that academics sometimes fall into is to begin a book and fail to �nish it� This
has happened to me� This book was intended to be published several years ago� Alas�
two other projects jumped the queue �Numerical Linear Algebra� with David Bau�
to be published in ���	 by SIAM� and Spectra and Pseudospectra� to be completed
thereafter
� At this point I do not know whether this numerical ODE�PDE book will
ever be properly �nished�

This is a shame�as people keep telling me� Electronically by email� and in person at
conferences� I am often asked 
when that PDE book is going to get done�� Anyone
who has been in such a situation knows how �attering such questions feel � � � at �rst�

The book is based on graduate courses taught to mathematicians and engineers since
���� at the Courant Institute� MIT� and Cornell� Successively more complete versions
have been used by me in these courses half a dozen times� and by a handful of colleagues
at these universities and elsewhere� Much of the book is quite polished� especially the
�rst half� and there are numerous exercises that have been tested in the classroom�
But there are many gaps too� and undoubtedly a few errors� I have reproduced here
the version of the text I used most recently in class� in the spring of �����

I am proud of Chapter �� which I consider as clean an introduction as any to the
classical theory of the numerical solution of ODE� The other main parts of the book are
Chapter �� which emphasizes the crucial relationship between smoothness of a function
and decay of its Fourier transform� Chapters � and �� which present the classical theory
of numerical stability for �nite di�erence approximations to linear PDE� and Chapters 	
and �� which o�er a hands�on introduction to Fourier and Chebyshev spectral methods�

This book is largely linear� and for that reason and others� there is much more to the
numerical solution of di�erential equations than you will �nd here� On the other hand�
Chapters ��� represent material that every numerical analyst should know� These
chapters alone can be the basis of an appealing course at the graduate level�

Please do not reproduce this text� all rights are reserved� Copies can be obtained for
��� or ��� each �including shipping
 by contacting me directly� Professors who are
using the book in class may contact me to obtain solutions to most of the problems�
�This is no longer true � the book is freely available online at
http���web�comlab�ox�ac�uk�oucl�work�nick�trefethen�pdetext�html��

Nick Trefethen
July ����

Department of Computer Science and Center for Applied Mathematics
Upson Hall� Cornell University� Ithaca� NY ������ USA
�	
�� 
����


� fax �	
�� 
�����
�� LNT�cs�cornell�edu
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Preface

Many books have been written on numerical methods for partial di�er�
ential equations� ranging from the mathematical classic by Richtmyer and
Morton to recent texts on computational �uid dynamics� But this is not an
easy �eld to set forth in a book� It is too active and too large� touching a be�
wildering variety of issues in mathematics� physics� engineering� and computer
science�

My goal has been to write an advanced textbook focused on basic prin�
ciples� Two remarkably fruitful ideas pervade this �eld� numerical stability
and Fourier analysis� I want the reader to think at length about these and
other fundamentals� beginning with simple examples� and build in the process
a solid foundation for subsequent work on more realistic problems� Numerical
methods for partial di�erential equations are a subject of subtlety and beauty�
but the appreciation of them may be lost if one views them too narrowly as
tools to be hurried to application�

This is not a book of pure mathematics� A number of theorems are proved�
but my purpose is to present a set of ideas rather than a sequence of theorems�
The book should be accessible to mathematically inclined graduate students
and practitioners in various �elds of science and engineering� so long as they
are comfortable with Fourier analysis� basic partial di�erential equations� some
numerical methods� the elements of complex variables� and linear algebra in�
cluding vector and matrix norms� At MIT and Cornell� successive drafts of
this text have formed the basis of a large graduate course taught annually
since �����

One unusual feature of the book is that I have attempted to discuss the
numerical solution of ordinary and partial di�erential equations in parallel�
There are numerous ideas in common here� well known to professionals� but
usually not stressed in textbooks� In particular I have made extensive use of
the elegant idea of stability regions in the complex plane�

Another unusual feature is that in a single volume� this book treats spec�
tral as well as the more traditional �nite di�erence methods for discretization
of partial di�erential equations� The solution of discrete equations by multi�
grid iterations� the other most conspicuous development in this �eld in the
past twenty years� is also introduced more brie�y�

The unifying theme of this book is Fourier analysis� To be sure� it is well
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known that Fourier analysis is connected with numerical methods� but here we
shall consider at least four of these connections in detail� and point out analo�
gies between them� stability analysis� spectral methods� iterative solutions of
elliptic equations� and multigrid methods� Indeed� a reasonably accurate title
would have been 
Fourier Analysis and Numerical Methods for Partial Dif�
ferential Equations�� Partly because of this emphasis� the ideas covered here
are primarily linear� this is by no means a textbook on computational �uid
dynamics� But it should prepare the reader to read such books at high speed�

Besides these larger themes� a number of smaller topics appear here that
are not so often found outside research papers� including�
� Order stars for stability and accuracy analysis�
� Modi�ed equations for estimating discretization errors�
� Stability in �p norms�
� Absorbing boundary conditions for wave calculations�
� Stability analysis of non�normal discretizations via pseudospectra�
� Group velocity e�ects and their connection with the stability of boundary
conditions�

Like every author� I have inevitably given greatest emphasis to those topics I
know through my own work�

The reader will come to know my biases soon enough� I hope he or she
shares them� One is that exercises are essential in any textbook� even if the
treatment is advanced� �The exercises here range from cookbook to philo�
sophical� those marked with solid triangles require computer programming�

Another is that almost every idea can and should be illustrated graphically� A
third is that numerical methods should be studied at all levels� from the most
formal to the most practical� This book emphasizes the formal aspects� saying
relatively little about practical details� but the reader should forget at his or
her peril that a vast amount of practical experience in numerical computation
has accumulated over the years� This experience is magni�cently represented
in a wealth of high�quality mathematical software available around the world�
such as EISPACK� LINPACK� LAPACK� ODEPACK� and the IMSL and NAG
Boeing Fortran libraries� not to mention such interactive systems as Matlab
and Mathematica�� Half of every applied problem can and should be handled
by o��the�shelf programs nowadays� This book will tell you something about
what those programs are doing� and help you to think productively about the
other half�

�For on�line acquisition of numerical software� every reader of this book should be sure to be familiar
with the �Netlib� facility maintained at Bell Laboratories and Oak Ridge National Laboratory� For
information� send the e�mail message �help� to netlib�research�att�com or netlib�ornl�gov�
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Notation

R �C �Z real numbers� complex numbers� integers

� marks a number contaminated by rounding errors

O�o��� order relations analogous to �� �� �� !

x�y� t space and time variables

��	�
 x wave number� y wave number� frequency

T initial�value problem is posed for t� ���T �

N dimension of system of equations

d number of space dimensions

u dependent variable �scalar or N �vector


h�k space and time step sizes h!"x� k!"t

i� j�n space and time indices

��r�s integers de�ning size of �nite di�erence stencil

vnij numerical approximation to u�ih�jh�nk


#u�#v Fourier transforms

��� mesh ratios �! k
h� �! k	
h

K�Z space and time shift operators K� vj �� vj
�� Z� v
n �� vn
�

��z space and time ampli�cation factors �! ei�h� z! ei�k

"�r forward and backward di�erence operators "!K��� r!��K��

��z
���z
 characteristic polynomials for a linear multistep formula

c�cg phase and group velocities c!�

�� cg !�d

d�

$�A
�$��A
 spectrum and ��pseudospectrum of A
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The following little sections � and � contain essential background material
for the remainder of the text� They are not chapters� just tidbits� Think of
them as appetizers�
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�� Big�O and related symbols

How fast is an algorithm% How accurate are the results it produces%
Answering questions like these requires estimating operation counts and errors�
and we need a convenient notation for doing so� This book will use the six
symbols o� O� ��  � �� and 	� Four of these are standard throughout the
mathematical sciences� while � and  have recently become standard at least
in theoretical computer science��

Here are the �rst four de�nitions� They are written for functions f�x
 and
g�x
 as x�
� but analogous de�nitions apply to other limits such as x� ��

O f�x
 !O�g�x

 as x�
 if there exist constants C � � and x� � � such
that jf�x
j �Cg�x
 for all x� x�� If g�x
 �! � this means jf�x
j
g�x
 is
bounded from above for all su&ciently large x� In words� 
f is O of g��

o f�x
! o�g�x

 as x�
 if for any constant C � � there exists a constant
x� � � such that jf�x
j � Cg�x
 for all x � x�� If g�x
 �! � this means
jf�x
j
g�x
 approaches � as x�
� In words� 
f is little�O of g��

� f�x
 ! ��g�x

 as x�
 if there exist constants C � � and x� � � such
that f�x
 � Cg�x
 for all x � x�� If g�x
 �! � this means f�x

g�x
 is
bounded from below for all su&ciently large x� In words� 
f is omega
of g��

 f�x
 !  �g�x

 as x�
 if there exist constants C�C � � � and x� � �
such that Cg�x
� f�x
� C �g�x
 for all x� x�� If g�x
 �! � this means
f�x

g�x
 is bounded from above and below� In words� 
f is theta of g��

The use of the symbols O� o� �� and  is a bit illogical� for properly
speaking� O�g�x

 for example is the set of all functions f�x
 with a certain
property� but why then don't we write f�x
 �O�g�x

% The answer is sim�
ply that the traditional usage� illogical or not� is well established and very
convenient�

The �nal two de�nitions are not so irregular�

�Thanks to the delightful note �Big omicron and big omega and big theta� by D� E� Knuth� ACM
SIGACT News �� �
���
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� f�x
� g�x
 as x�
 if f�x
�g�x
! o�jg�x
j
� If g�x
 �!� this is equiva�
lent to limx��f�x

g�x
! �� In words� 
f is asymptotic to g��

	 This symbol is easy� it has no precise de�nition( The statement f�x
	
g�x
 is qualitative only� and the argument x plays no role� Often in this
book� but not always� we shall use 	 to indicate that a real number
has been rounded or chopped to a �nite number of digits� e�g�� � 	 � or
�	 ��������������	��������

EXAMPLE ���� True statements as x��� sinx�O��	
 logx� o�x�����	
 ex���x���	

�
sin�x����	
 coshx� ex
o��	� ex� False statements as x��� x� o����x	
 sinx�
���	
 e�x� ��

The relationship between these de�nitions can be summarized by the Venn
diagram of Figure ���� LetX denote the set of all pairs of functions ff�gg� The
diagram illustrates� for example� that the subset of X consisting of pairs ff�gg
with f�x
! o�g�x

 is contained in the subset of pairs with f�x
!O�g�x

� In
other words� f�x
! o�g�x

 implies f�x
!O�g�x

�

Figure ���� Venn diagram showing the relationship between o� O� �� and  �
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EXERCISES

� ���� True or False�

�a� x� sin���x	�x� as x� ��

�b� x� sin���x	�x as x���

�c� �sinx	�� sin�x�	 as x� ��

�d� �logx	�� o�log�x�		 as x���

�e� n� ���n�e	n as n���

� ���� Suppose g�x	� � as x��� Find interesting examples of functions f �� g occupying
all �ve distinct positions in the Venn diagram of Figure ����

� ���� True or False�

�a� A���V ���	 as V ��
 where A and V are the surface area and volume of a sphere
measured in square miles and cubic microns
 respectively�

�b� limn�� an� b �� an� b
o��	 as n���

�c� A set of N words can be sorted into alphabetical order by an algorithm that makes
O�N logN	 pairwise comparisons�

�d� Solving an N�N matrix problem Ax� b by Gaussian elimination on a serial computer
takes ��N�	 operations�
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�� Rounding and truncation errors

Throughout this book we shall be concerned with computed
 inexact approximations
to ideal quantities� Two things keep them from being exact� rounding errors and truncation
errors�

Rounding errors are the errors introduced by computers in simulating real or com�
plex arithmetic by �oating�point arithmetic�� For most purposes they can be treated as
ubiquitous and random
 and it is possible to be quite precise about how they behave� Given
a particular machine with a particular system of �oating�point arithmetic
 let machine ep�

silon be de�ned as the smallest positive �oating�point number � such that �	
 �� �� Here
	
 denotes �oating�point addition of �oating�point numbers� analogous notations apply for


 �
 and �� Then on well�designed computers
 if a and b are arbitrary �oating�point
numbers
 the following identities hold�

a	
 b � �a
b	��
�	

a	
 b � �a
b	��
�	

a	� b � �a�b	��
�	

a	� b � �a�b	��
�	

������
�����

for some � with j�j�� � ����	

the quantity � is of course di�erent from one appearance to the next� In other words
 each

�oating�point operation introduces a relative error of magnitude less than ��y

Truncation errors
 or discretization errors
 are the errors introduced by algo�
rithms in replacing an in�nite or in�nitesimal quantity by something �nite� they have noth�
ing to do with �oating�point arithmetic� For example
 the error introduced in truncating an
in�nite series at some �nite term N is a truncation error
 and so is the error introduced in
replacing a derivative du�dt by the �nite di�erence �u�t
�t	
u�t
�t	����t� Truncation
errors do not appear in all areas of numerical computation� they are absent
 for example

in solving a linear system of equations by Gaussian elimination� They are usually unavoid�
able
 however
 in the numerical solution of di�erential equations� Unlike rounding errors

truncation errors are generally not at all random
 but may have a great deal of regularity�

Rounding errors would vanish if computers were in�nitely accurate� Truncation errors
would vanish if computers were in�nitely fast and had in�nitely large memories
 so that there
were no need to settle for �nite approximations� Further discussion of this distinction can

�Floating�point numbers are real numbers of the form x��f��e� where � is the base �usually
	� ��� or ���� f � � is the fraction represented to t digits in base �� and e is an adjustable
exponent� Floating�point arithmetic refers to the use of �oating�point numbers together with
approximate arithmetic operations de�ned upon them� Early computers sometimes used ��xed�
point arithmetic� instead� but this is unheard�of nowadays except in special�purpose machines� For
an introduction to �oating�point arithmetic see G� B� Forsythe� M� A� Malcolm � C� B� Moler�
Computer Methods for Mathematical Computations� Prentice�Hall� �
��� and for a table of the
�oating�point characteristics of existing computers as of �
��� see W� J� Cody� ACM Trans� Math�

Softw� �� ��
���� ��������
yThis description ignores the possibility of under�ow or over�ow�
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be found in many books on numerical analysis
 such as P� Henrici
 Essentials of Numerical
Analysis� Wiley
 �����

In this book we shall frequently ask how a particular computation may be a�ected by
rounding or truncation errors� Which source of error dominates� Most often
 rounding errors
are negligible and the accuracy is determined by truncation errors� When an instability is
present
 however
 the situation is sometimes reversed� We shall pay careful attention to
such matters
 for there is no other way to understand mathematical computations fully�

Truncation errors depend only on the algorithm
 but rounding errors depend also on
the machine� We shall use the following notation throughout the book� a number preceded
by a star 	 is signi�cantly contaminated by rounding errors and hence machine�dependent�

EXAMPLE ���� For example
 suppose we approximate ex by the ����term series

f�x	 � �
x

x�

�

 � � �


x���

����



evaluated on the computer from left to right as written� On a Sun Workstation in double
precision with ������� ����������
 we obtain

e��� ����������
 f���	� ����������


e���� �����������
 f����	� �����������


e���� ����������	
 f�
��	� 	����������	�

Thus f���	 is accurate
 but f����	 is inaccurate because of truncation errors
 and f�
��	
is inaccurate because of rounding errors� �Why� See Exercise ����	 This straightforward
summation of the Taylor series for ex is a classic example of a bad algorithm� it is sometimes
unstable and always ine�cient
 unless jxj is small�

Some people consider the study of rounding errors a tedious business� and
there are those who assume that all of numerical analysis must be tedious� for
isn't it mainly the study of rounding errors% Here are three reasons why these
views are unjusti�ed�

First� thanks to the simple formulas ����
� the modeling of rounding errors
is easy and even elegant� Rounding errors are by no means capricious or
unpredictable� and one can understand them well without worrying about
machine�dependent engineering details�

Second� the existence of inexact arithmetic should be blamed not on com�
puters� but on mathematics itself� It has been known for a long time that many
well�de�ned quantities cannot be calculated exactly by any �nite sequence of
elementary operations� the classic example is the 
unsolvability� of the roots
of polynomials of degree � �� Thus approximations are unavoidable even in
principle��

�Mathematics also rests on approximations at a more fundamental level� The set of real numbers is
uncountably in�nite� but as was �rst pointed out by Turing in his famous paper on �Computable
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Finally and most important� numerical analysis is not just the study of
rounding errors( Here is a better de�nition�

Numerical analysis is the study of algorithms

for mathematical problems involving continuous variables�

Thus it is a �eld devoted to algorithms� in which the basic questions take the
form� 
What is the best algorithm for computing such�and�such%� Insensitivity
to rounding errors is only a part of what makes a numerical algorithm good�
speed� for example� is certainly as important�

EXERCISES

������� ���� Figure out machine epsilon exactly on your calculator or computer� What are the
base � and the precision t� Explain your reasoning carefully�

� ���� �Continuation of Example �����
�a� Explain the mechanism by which rounding errors a�ected the computation of f�
��	�

�b� If we compute f�
���	 in the same way
 will there be a star in front of the result�

�c� Suggest an algorithm for calculating ex more quickly and accurately in �oating�point
arithmetic�

Numbers� in �
��� only a countable subset of them can ever be speci�ed by any �nite description�
The vast majority of real numbers can only be described in e�ect by listing their in�nite decimal
expansions� which requires an in�nite amount of time� Thus most real numbers are not merely
unrepresentable on computers� they are unmentionable even by pure mathematicians� and exist
only in a most shadowy sense�
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Chapter ��

Ordinary Di�erential Equations

���� Initial value problems

���� Linear multistep formulas

���� Accuracy and consistency

���� Derivation of linear multistep formulas

���� Stability

���� Convergence and the Dahlquist Equivalence Theorem

���� Stability regions and absolute stability

��	� Sti
ness

��	� Runge�Kutta methods

���� Notes and references

Just as the twig is bent� the tree�s inclined�

� ALEXANDER POPE� Moral Essays ���	
�
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The central topic of this book is time�dependent partial di
erential equa�
tions 
PDEs�� Even when we come to discuss elliptic PDEs� which are not
time�dependent� we shall �nd that some of the best numerical methods are
iterations that behave very much as if there were a time variable� That is why
elliptic equations come at the end of the book rather than the beginning�

Ordinary di
erential equations 
ODEs� embody one of the two essential
ingredients of this central topic� variation in time� but not in space� Because
the state at any moment is determined by a �nite set of numbers� ODEs are
far easier to solve and far more fully understood than PDEs� In fact� an ODE
usually has to be nonlinear before its behavior becomes very interesting�
which is not the case at all for a PDE�

The solution of ODEs by discrete methods is one of the oldest and most
successful areas of numerical computation� A dramatic example of the need
for such computations is the problem of predicting the motions of planets or
other bodies in space� The governing di
erential equations have been known
since Newton� and for the case of only two bodies� such as a sun and a planet�
Newton showed how to solve them exactly� In the three centuries since then�
however� no one has ever found an exact solution for the case of three or more
bodies�� Yet the numerical calculation of such orbits is almost e
ortless by
modern standards� and is a routine component of the control of spacecraft�

The most important families of numerical methods for ODEs are
� linear multistep methods�
� Runge�Kutta methods�

This chapter presents the essential features of linear multistep methods� with
emphasis on the fundamental ideas of accuracy� stability� and convergence� An
important distinction is made between �classical� stability and �eigenvalue
stability�� All of these notions will prove indispensable when we move on to
discuss PDEs in Chapter �� Though we do not describe Runge�Kutta methods
except brie�y in x��	� most of the analytical ideas described here apply with
minor changes to Runge�Kutta methods too�

�In fact there are theorems to the e�ect that such an exact solution can never be found� This
unpredictability of many�body motions is connected with the phenomenon of chaos�
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���� Initial value problems

An ordinary di�erential equation� orODE� is an equation of the form

ut
t�� f
u
t�� t�� 
������

where t is the time variable� u is a real or complex scalar or vector function
of t 
u
t� � C

N � N � ��� and f is a function that takes values in C
N �� We

also say that 
������ is a system of ODEs of dimension N � The sym�
bol ut denotes du�dt� and if N � �� it should be interpreted componentwise�


u���� � � � �u�N��Tt �
u
���
t � � � � �u

�N�
t �T � Similarly� utt denotes d

�u�dt�� and so on�
Where clarity permits� we shall leave out the arguments in equations like

������� which then becomes simply ut� f �

The study of ODEs goes back to Newton and Leibniz in the �����s� and
like so much of mathematics� it owes a great deal also to the work of Euler in
the �	th century� Systems of ODEs were �rst considered by Lagrange in the
����s� but the use of vector notation did not become standard until around
�	���

If f
u�t� � �
t�u��
t� for some functions �
t� and �
t�� the ODE is
linear� and if �
t�� � it is linear and homogeneous� 
In the vector case �
t�
is an N�N matrix and �
t� is an N �vector�� Otherwise it is nonlinear� If
f
u�t� is independent of t� the ODE is autonomous� If f
u�t� is independent
of u� the ODE reduces to an inde�nite integral�

To make 
������ into a fully speci�ed problem� we shall provide initial
data at t� � and look for solutions on some interval t � ���T �� T � �� The
choice of t� � as a starting point introduces no loss of generality� since any
other t	 could be treated by the change of variables t

�� t� t	�

Initial Value Problem� Given f as described above� T � �� and u	 � C
N �

�nd a di�erentiable function u
t� de�ned for t� ���T � such that

�a� u
��� u	�

�b� ut
t�� f
u
t�� t� for all t� ���T ��

������

�C N is the space of complex column vectors of length N � In practical ODE problems the variables
are usually real
 so that for many purposes we could write RN instead� When we come to Fourier
analysis of linear partial di�erential equations
 however
 the use of complex variables will be very
convenient�



���� INITIAL VALUE PROBLEMS TREFETHEN ���� � ��

Numerical methods for solving ODE initial�value problems are the subject of
this chapter� We shall not discuss boundary�value problems� in which various
components of u are speci�ed at two or more distinct points of time� see Keller

���	� and Ascher� et al� 
��		��

EXAMPLE ������ The scalar initial�value problem ut � Au� u	
� � a has the solution
u	t� � aetA� which decays to 
 as t�� provided that A� 
� or ReA� 
 if A is complex�
This ODE is linear� homogeneous� and autonomous�

EXAMPLE ������ The example above becomes a vector initial�value problem if u and
a are N �vectors and A is an N�N matrix� The solution can still be written u	t� � etAa�
if etA now denotes the N �N matrix de�ned by applying the usual Taylor series for the
exponential to the matrix tA� For generic initial vectors a� this solution u	t� decays to the
zero vector as t��� i�e� limt�� ku	t�k�
� if and only if each eigenvalue � of A satis�es
Re�� 
�

EXAMPLE ������ The scalar initial�value problem ut�ucost� u	
� � � has the solution
u	t� � esint� One can derive this by separation of variables by integrating the equation
du�u�costdt�

EXAMPLE ������ The nonlinear initial�value problem ut�u
u�� u	
�� � has the solution
u	t� � ��	�e�t���� which is valid until the solution becomes in�nite at t� log�� 
�����
This ODE is an example of a Bernoulli di�erential equation� One can derive the solution by
the substitution w	t� � ��u	t�� which leads to the linear initial�value problem wt����w�
w	
�� �� with solution w	t�� �e�t���

EXAMPLE ������ The Lorenz equations� with the most familiar choice of parameters�
can be written

ut���
u
�
v� vt���u�v�uw� wt�� �
�w
uv�

This is the classical example of a nonlinear system of ODEs whose solutions are chaotic�
The solution cannot be written in closed form�

Equation 
������ is an ODE of �rst order� for it contains only a �rst
derivative with respect to t� Many ODEs that occur in practice are of sec�
ond order or higher� so the form we have chosen may seem unduly restrictive�
However� any higher�order ODE can be reduced to an equivalent system of
�rst�order ODEs in a mechanical fashion by introducing additional variables
representing lower�order terms� The following example illustrates this reduc�
tion�

EXAMPLE ������ Suppose that a mass m at the end of a massless spring of length
y experiences a force F ��K	y�y��� where K is the spring constant and y� is the rest
position 	Hooke�s Law�� By Newton�s First Law� the motion is governed by the autonomous
equation

ytt��
K

m
	y�y��� y	
�� a� yt	
�� b
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for some a and b� a scalar second�order initial�value problem� Now let u be the ��vector
with u���� y� u���� yt� Then the equation can be rewritten as the �rst�order system

u
���
t �u����

u
���
t ��K

m
	u����y���

u���	
�� a�

u���	
�� b�

It should be clear from this example� and Exercise ����� below� how to
reduce an arbitrary collection of higher�order equations to a �rst�order system�
More formal treatments of this process can be found in the references�

Throughout the �elds of ordinary and partial di
erential equations�and
their numerical analysis�there are a variety of procedures in which one prob�
lem is reduced to another� We shall see inhomogeneous terms reduced to
initial data� initial data reduced to boundary values� and so on� But this re�
duction of higher�order ODEs to �rst�order systems is unusual in that it is not
just a convenient theoretical device� but highly practical� In fact� most of the
general�purpose ODE software currently available assumes that the equation is
written as a �rst�order system� One pays some price in e�ciency for this� but
it is usually not too great� For PDEs� on the other hand� such reductions are
less often practical� and indeed there is less general�purpose software available
of any kind�

It may seem obvious that 
������ should have a unique solution for all
t � �� after all� the equation tells us exactly how u changes at each instant�
But in fact� solutions can fail to exist or fail to be unique� and an example of
nonexistence for t� log� appeared already in Example ����� 
see also Exercises
����� and ������� To ensure existence and uniqueness� we must make some
assumptions concerning f � The standard assumption is that f is continuous
with respect to t and satis�es a 
uniform� Lipschitz condition with respect

to u� This means that there exists a constant L� � such that for all u�v � C
N

and t� ���T ��

kf
u�t��f
v� t�k�Lku�vk� 
������

where k�k denotes some norm on the set of N �vectors� 
For N ��� i�e� a scalar
system of equations� k�k is usually just the absolute value j � j� For N � �� the
most important examples of norms are k�k�� k�k�� and k�k�� and the reader
should make sure that he or she is familiar with these examples� See Appendix
B for a review of norms�� A su�cient condition for Lipschitz continuity is that
the partial derivative of f
u�t� with respect to u exists and is bounded in norm

by L for all u� C
N and t� ���T ��

The following result goes back to Cauchy in �	���
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EXISTENCE AND UNIQUENESS FOR THE INITIAL VALUE PROBLEM

Theorem ���� Let f
u�t� be continuous with respect to t and uniformly
Lipschitz continuous with respect to u for t � ���T �� Then there exists a
unique di�erentiable function u
t� that satis�es the initial�value problem
�	�	�
��

The standard proof of Theorem ��� nowadays� which can be found in many
books on ODEs� is based on a construction called the method of successive
approximations or the Picard iteration� This construction can be realized as
a numerical method� but not one of the form we shall discuss in this book�
Following Cauchy�s original idea� however� a more elementary proof can also
be based on more standard numerical methods� such as Euler�s formula� which
is mentioned in the next section� See Henrici 
����� or Hairer� N�rsett  
Wanner 
��	���

Theorem ��� can be strengthened by allowing f to be Lipschitz continuous
not for all u� but for u con�ned to an open subset D of C N � Unique solutions
then still exist on the interval ���T ��� where T � is either the �rst point at which
the solution hits the boundary of D� or T � whichever is smaller�

EXERCISES

� ������ Reduction to �rst�order system� Consider the system of ODEs

uttt�utt
vt� vtt�u�
sin	v�
etutvt

with initial data
u	
��ut	
��utt	
�� vt	
�� 
� v	
�� ��

Reduce this initial�value problem to a �rst�order system in the standard form 	�������

� ������ The planets� M planets 	or suns� or spacecraft� orbit about each other in three
space dimensions according to Newton�s laws of gravitation and acceleration� What are
the dimension and order of the corresponding system of ODEs� �a� When written in their
most natural form� �b� When reduced to a �rst�order system� 	This problem is intended
to be straightforward� do not attempt clever tricks such as reduction to center�of�mass
coordinates��

� ������ Existence and uniqueness� Apply Theorem ��� to show existence and uniqueness of
the solutions we have given for the following initial�value problems� stating explicitly your
choices of suitable Lipschitz constants L�

�a� Example ������

�b� Example ������

�c� Example ������ First� by considering ut� u
u� itself� explain why Theorem ��� does
not guarantee existence or uniqueness for all t� 
� Next� by considering the transformed
equation wt����w� show that Theorem ��� does guarantee existence and uniqueness
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until such time as u may become in�nite� Exactly how does the proof of the theorem
fail at that point�

�d� Example ������

� ����	� Nonexistence and nonuniqueness� Consider the scalar initial�value problem

ut�u�� u	
��u�� 


for some constant �� 
�

�a� For which � does Theorem ��� guarantee existence and uniqueness of solutions for all
t� 
�

�b� For ��� and u���� no solution for all t� 
 exists� Verify this informally by �nding an
explicit solution that blows up to in�nity in a �nite time� 	Of course such an example
by itself does not constitute a proof of nonexistence��

�c� For �� �
� and u��
� there is more than one solution� Find one of them� an �obvious�

one� Then �nd another �obvious� one� Now construct an in�nite family of distinct
solutions�

� ����
� Continuity with respect to t� Theorem ��� requires continuity with respect to t as well
as Lipschitz continuity with respect to u� Show that this assumption cannot be dispensed
with by �nding an initial�value problem� independent of T � in which f is uniformly Lipschitz
continuous with respect to u but discontinuous with respect to t� and for which no solution
exists on any interval �
�T � with T � 
� �Hint� consider the degenerate case in which f	u�t�
is independent of u��
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���� Linear multistep formulas

Most numerical methods in every �eld are based on discretization� For the solution
of ordinary di�erential equations� one of the most powerful discretization strategies goes by
the name of linear multistep methods�

Suppose we are given an initial�value problem 	������ that satis�es the hypotheses of
Theorem ��� on some interval �
�T �� Then it has a unique solution u	t� on that interval�
but the solution can rarely be found analytically� Let k � 
 be a real number� the time
step� and let t�� t�� � � � be de�ned by tn�nk� Our goal is to construct a sequence of values
v��v�� � � � such that

vn�u	tn�� n� 
� 	������

	The superscripts are not exponents��we are leaving room for subscripts to accommodate
spatial discretization in later chapters�� We also sometimes write v	tn� instead of vn� Let
fn be the abbreviation

fn� f	vn� tn�� 	������

A linear multistep method is a formula for calculating each new value vn	� from some of
the previous values v�� � � � �vn and f�� � � � �fn�� Equation 	������� below will make this more
precise�

We shall take the attitude� standard in this �eld� that the aim in solving an initial�
value problem numerically is to achieve a prescribed accuracy with the use of as few function
evaluations f	vn� tn� as possible� In other words� obtaining function values is assumed to be
so expensive that all subsequent manipulations�all �overhead� operations�are essentially
free� For easy problems this assumption may be unrealistic� but it is the harder problems
that matter more� For hard problems values of f may be very expensive to determine�
particularly if they are obtained by solving an inner algebraic or di�erential equation�

Linear multistep methods are designed to minimize function evaluations by using the
approximate values vn and fn repeatedly�

The simplest linear multistep method is a one�step method� the Euler formula� de�ned
by

vn	�� vn
kfn� 	������

The motivation for this formula is linear extrapolation� as suggested in Figure �����a� If
v� is given 	presumably set equal to the initial value u��� it is a straightforward matter to
apply 	������ to compute successive values v��v�� � � � � Euler�s method is an example of an
explicit one�step formula�

A related linear multistep method is the backward Euler 	or implicit Euler� for�
mula� also a one�step formula� de�ned by

vn	�� vn
kfn	�� 	������

The switch from fn to fn	� is a big one� for it makes the backward Euler formula im�
plicit� According to 	������� fn	� is an abbreviation for f	vn	�� tn	��� Therefore� it would

�In general
 vn and fn are vectors in C
N 
 but it is safe to think of them as scalars� the extension to

systems of equations is easy�
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�a� Euler �b� midpoint

Figure ������ One step of the Euler and midpoint formulas� The solid curves
represent not the exact solution to the initial�value problem� but the exact solu�
tion to the problem ut� f � u	tn�� vn�

appear that vn	� cannot be determined from 	������ unless it is already known� In fact� to
implement an implicit formula� one must employ an iteration of some kind to solve for the
unknown vn	�� and this involves extra work� not to mention the questions of existence and
uniqueness�� But as we shall see� the advantage of 	������ is that in some situations it may
be stable when 	������ is catastrophically unstable� Throughout the numerical solution of
di�erential equations� there is a tradeo� between explicit methods� which tend to be easier
to implement� and implicit ones� which tend to be more stable� Typically this tradeo� takes
the form that an explicit method requires less work per time step� while an implicit method
is able to take larger and hence fewer time steps without sacri�cing accuracy to unstable
oscillations��

An example of a more accurate linear multistep formula is the trapezoid rule�

vn	� � vn

k

�
	fn
fn	��� 	������

also an implicit one�step formula� Another is the midpoint rule�

vn	� � vn��
�kfn� 	������

an explicit two�step formula 	Figure �����b�� The fact that 	������ involves multiple time
levels raises a new di�culty� We can set v��u�� but to compute v� with this formula� where

�In so�called predictor�corrector methods
 not discussed in this book
 the iteration is terminated
before convergence
 giving a class of methods intermediate between explicit and implicit�

�But don�t listen to people who talk about 
conservation of di�culty� as if there were never any
clear winners� We shall see that sometimes explicit methods are vastly more e�cient than implicit
ones �large non�sti� systems of ODEs�
 and sometimes it is the reverse �small sti� systems��
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shall we get v��� Or if we want to begin by computing v�� where shall we get v�� This
initialization problem is a general one for linear multistep formulas� and it can be addressed
in several ways� One is to calculate the missing values numerically by some simpler formula
such as Euler�s method�possibly applied several times with a smaller value of k to avoid
loss of accuracy� Another is to handle the initialization process by Runge�Kutta methods�
to be discussed in Section ����

In Chapter � we shall see that the formulas 	������ 	������ have important analogs for

partial di�erential equations�y For the easier problems of ordinary di�erential equations�
however� they are too primitive for most purposes� Instead one usually turns to more
complicated and more accurate formulas� such as the fourth�order Adams�Bashforth
formula�

vn	� � vn

k

��

�
��fn���fn��
�!fn����fn��

�
� 	����!�

an explicit four�step formula� or the fourth�order Adams�Moulton formula�

vn	� � vn

k

��

�
�fn	�
��fn��fn��
fn��

�
� 	������

an implicit three�step formula� Another implicit three�step formula is the third�order
backwards di	erentiation formula�

vn	� � ��
��v

n� 

��v

n��
 �
��v

n��
 �
��kf

n	�� 	������

whose advantageous stability properties will be discussed in Section ����

EXAMPLE ������ Let us perform an experiment to compare some of these methods� The
initial�value problem will be

ut�u� t� �
���� u	
�� �� 	�����
�

whose solution is simply u	t� � et� Figure ����� compares the exact solution with the nu�
merical solutions obtained by the Euler and midpoint formulas with k � 
�� and k � 
���
	For simplicity� we took v� equal to the exact value u	t�� to start the midpoint formula��
A solution with the fourth�order Adams�Bashforth formula was also calculated� but is in�
distinguishable from the exact solution in the plot� Notice that the midpoint formula does
much better than the Euler formula� and that cutting k in half improves both� To make
this precise� Table ����� compares the various errors u	���v	��� The �nal column of ratios
suggests that the errors for the three formulas have magnitudes "	k�� "	k��� and "	k�� as
k� 
� The latter �gure accounts for the name �fourth�order�� see the next section�

Up to this point we have listed a few formulas� some with rather compli�
cated coe�cients� and shown that they work at least for one problem� Fortu�
nately� the subject of linear multistep methods has a great deal more order in
it than this� A number of questions suggest themselves�

�What is the general form of a linear multistep method!

yEuler
 Backward Euler
 Crank�Nicolson
 and Leap Frog�
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�a� k���� �b� k����

Figure ������ Solution of 
������� by the Euler 
�� and midpoint 
o� formulas�

k���� k���� k����� ratio 
k���� to k� ����

Euler ������� ������� ������� ����
Midpoint ������� �����	� ������� ����
AB� ������� ������	 ������� ����

Table ������ Errors u
���v
�� for the experiment of Figure ������

� Can appropriate coe�cients be derived in a systematic way!
� How accurate are these methods!
� Can anything go wrong!

In the following pages we shall see that these questions have very interesting
answers�

We can take care of the �rst one right away by de�ning the general linear
multistep formula�
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An s�step linear multistep formula is a formula

sX
j�	

�jv
n�j � k

sX
j�	

�jf
n�j 
�������

for some constants f�jg and f�jg with �s�� and either �	 	�� or �	 	���
If �s�� the formula is explicit� and if �s 	�� it is implicit�

Readers familiar with electrical engineering may notice that 
������� looks
like the de�nition of a recursive or IIR digital �lter 
Oppenheim  Schafer�
��	��� Linear multistep formulas can indeed be thought of in this way� and
many of the issues to be described here also come up in digital signal process�
ing� such as the problem of stability and the idea of testing for it by looking for
zeros of a polynomial in the unit disk of the complex plane� A linear multistep
formula is not quite a digital �lter of the usual kind� however� In one respect
it is more general� since the function f depends on u and t rather than on t
alone� In another respect it is more narrow� since the coe�cients are chosen
so that the formula has the e
ect of integration� Digital �lters are designed
to accomplish a much wider variety of tasks� such as high�pass or low�pass
�ltering 
� smoothing�� di
erentiation� or channel equalization�

What about the word �linear�! Do linear multistep formulas apply only
to linear di
erential equations! Certainly not� Equation 
������� is called
linear because the quantities vn and fn are related linearly� f may very well
be a nonlinear function of u and t� Some authors refer simply to �multistep
formulas� to avoid this potential source of confusion�

EXERCISES

� ������ What are s� f�jg� and f	jg for formulas 	����!� 	�������

� ������ Linear multistep formula for a system of equations� One of the footnotes above
claimed that the extension of linear multistep methods to systems of equations is easy�
Verify this by writing down exactly what the ��� system of Example ����� becomes when
it is approximated by the midpoint rule 	�������

� ������ Exact answers for low�degree polynomials� If L is a nonnegative integer� the initial�
value problem

ut	t��
L

t
�
u	t�� u	
�� �

has the unique solution u	t� � 	t
��L� Suppose we calculate an approximation v	�� by a
linear multistep formula� using exact values where necessary for the initialization�

�a� For which L does 	������ reproduce the exact solution� �b� 	������� �c� 	����!��

� ����	� Extrapolation methods�
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�a� The values Vk � v	�� � u	�� computed by Euler�s method in Figure ����� are V��� �
��!�!�
 and V���� �����!�� Use a calculator to compute the analogous value V����

�b� It can be shown that these quantities Vk satisfy

Vk � u	��
C�k
C�k
�
O	k��

for some constants C�� C� as k� 
� In the process known as Richardson extrapola�
tion� one constructs the higher�order estimates

V �

k � Vk
	Vk�V�k� � u	��
O	k��

and
V ��

k � V �

k

�
� 	V

�

k�V �

�k� � u	��
O	k���

Apply these formulas to compute V ��

��� for this problem� How accurate is it� This is
an example of an extrapolation method for solving an ordinary di�erential equation
	Gragg ����� Bulirsch # Stoer ������ The analogous method for calculating integrals
is known as Romberg integration 	Davis # Rabinowitz ��!���
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���� Accuracy and consistency

In this section we de�ne the consistency and order of accuracy of a linear multistep for�
mula� as well as the associated characteristic polynomials 
	z� and �	z�� and show how these
de�nitions can be applied to derive accurate formulas by a method of undetermined coe��
cients� We also show that linear multistep formulas are connected with the approximation
of the function logz by the rational function 
	z���	z� at z���

With f�jg and f	jg as in 	�������� the characteristic polynomials 	or generating
polynomials� for the linear multistep formula are de�ned by


	z��

sX
j
�

�jz
j � �	z��

sX
j
�

	jz
j � 	������

The polynomial 
 has degree exactly s� and � has degree s if the formula is implicit or �s
if it is explicit� Specifying 
 and � is obviously equivalent to specifying the linear multistep
formula by its coe�cients� We shall see that 
 and � are convenient for analyzing accuracy
and indispensable for analyzing stability�

EXAMPLE ������ Here are the characteristic polynomials for the �rst four formulas of
the last section�

Euler 	������� s��� 
	z�� z��� �	z�� ��

Backward Euler 	������� s��� 
	z�� z��� �	z�� z�

Trapezoid 	������� s��� 
	z�� z��� �	z�� �
� 	z
���

Midpoint 	������� s��� 
	z�� z���� �	z�� �z�

Now let Z denote a time shift operator that acts both on discrete
functions according to

Zvn� vn��� 
������

and on continuous functions according to

Zu
t�� u
t�k�� 
������


In principle we should write �Zv�n and �Zu�
t�� but expressions like Zvn and
even Z
vn� are irresistibly convenient�� The powers of Z have the obvious
meanings� e�g�� Z�vn� vn�� and Z��u
t�� u
t�k��

Equation 
������� can be rewritten compactly in terms of Z� 	� and 
�

	
Z�vn�k

Z�fn � �� 
������

When a linear multistep formula is applied to solve an ODE� this equation is
satis�ed exactly since it is the de�nition of the numerical approximation fvng�
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If the linear multistep formula is a good one� the analogous equation ought
to be nearly satis�ed when fvng and ffng are replaced by discretizations of
any well�behaved function u
t� and its derivative ut
t�� With this in mind� let
us de�ne the linear multistep di�erence operator L� acting on the set of
continuously di
erentiable functions u
t�� by

L � 	
Z��kD

Z�� 
������

where D is the time di
erentiation operator� that is�

Lu
tn� � 	
Z�u
tn��k

Z�ut
tn�

�
sX

j�	

�ju
tn�j��k
sX

j�	

�jut
tn�j��

������

If the linear multistep formula is accurate� Lu
tn� ought to be small� and we
make this precise as follows� Let a function u
t� and its derivative ut
t� be
expanded formally in Taylor series about tn�

u
tn�j� � u
tn��jkut
tn��
�
�
jk�

�utt
tn�� � � � � 
������

ut
tn�j� � ut
tn��jkutt
tn��
�
�
jk�

�uttt
tn�� � � � � 
����	�

Inserting these formulas in 
������ gives the formal local discretization

error 
or formal local truncation error� for the linear multistep formula�

Lu
tn� � C	u
tn��C�kut
tn��C�k
�utt
tn�� � � � � 
������

where

C	 � �	� � � ���s�

C� � 
������� � � ��s�s��
�	� � � ���s��

C� �
�
�
������� � � ��s

��s��
������� � � ��s�s�
���

Cm �
sX

j�	

jm

m"
�j�

sX
j�	

jm��


m���"
�j � 
�������

We now de�ne�

A linear multistep formula has order of accuracy p if

Lu
tn� � #
k
p��� as k
 ��

i�e�� if C	 �C� � � � ��Cp� � but Cp�� 	� �� The error constant is Cp���
The formula is consistent if C	 �C� � �� i�e�� if it has order of accuracy
p� ��
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EXAMPLE �����
 CONTINUED� First let us analyze the local accuracy of the Euler
formula in a lowbrow fashion that is equivalent to the de�nition above� we suppose that
v�� � � � �vn are exactly equal to u	t��� � � � �u	tn�� and ask how close vn	� will then be to u	tn	���
If vn�u	tn� exactly� then by de�nition�

vn	� � vn
kfn � u	tn�
kut	tn��

while the Taylor series 	����!� gives

u	tn	�� � u	tn�
kut	tn�

k�

�
utt	tn�
O	k���

Subtraction gives

u	tn	���vn	� �
k�

�
utt	tn�
O	k��

as the formal local discretization error of the Euler formula�
Now let us restate the argument in terms of the operator L� By combining 	������

and 	����!�� or by calculating C��C��
� C��
�
� � C��

�
� from the values ������ �����

	���� 	��
 in 	�����
�� we obtain

Lu	tn� � u	tn	���u	tn��kut	tn�

�
k�

�
utt	tn�


k�

�
uttt	tn�
 � � � � 	�������

Thus again we see that the order of accuracy is �� and evidently the error constant is �
� �

Similarly� the trapezoid rule 	������ has

Lu	tn� � u	tn	���u	tn��
k

�

�
ut	tn	��
ut	tn�

�
� �k�

��
uttt	tn��

k�

��
utttt	tn�
 � � � � 	�������

with order of accuracy � and error constant � �
�� � and the midpoint rule 	������ has

Lu	tn� � �
�k

�uttt	tn�

�
�k

�utttt	tn�
 � � � � 	�������

with order of accuracy � and error constant �
� �

The idea behind the de�nition of order of accuracy is as follows� Equation

������ suggests that if a linear multistep formula is applied to a problem with a

su�ciently smooth solution u
t�� an error of approximately Cp��k
p�� dp	�u

dtp	�

tn�

�O
kp��� will be introduced locally at step n�� This error is known as the
local discretization 
or truncation� error at step n for the given initial�
value problem 
as opposed to the formal local discretization error� which is a

�As usual
 the limit associated with the Big�O symbol �k� 	� is omitted here because it is obvious�
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formal expression that does not depend on the initial�value problem�� Since
there are T�k �#
k��� steps in the interval ���T �� these local errors can be
expected to add up to a global error O
kp�� We shall make this argument
more precise in Section ����

With hindsight� it is obvious by symmetry that the trapezoid and mid�
point formulas had to have even orders of accuracy� Notice that in 
������� the
terms involving vn�j are antisymmetric about tn� and those involving fn�j

are symmetric� In 
������� the e
ect of these symmetries is disguised� because
tn�� was shifted to tn for simplicity of the formulas in passing from 
������ to

������� and 
������� However� if we had expressed Lu
tn� as a Taylor series
about tn�� instead� we would have obtained

Lu
tn� �
�
�k

�uttt
tn����
�
�	k

�uttttt
tn����O
k
���

with all the even�order derivatives in the series vanishing due to symmetry�
Now it can be shown that to leading order� it doesn�t matter what point one
expands Lu
tn� about� C	� � � � �Cp�� are independent of this point� though the
subsequent coe�cients Cp���Cp��� � � � are not� Thus the vanishing of the even�
order terms above is a valid explanation of the second�order accuracy of the
midpoint formula� For the trapezoid rule 
������� we can make an analogous
argument involving an expansion of Lu
tn� about tn�����

As a rule� symmetry arguments do not go very far in the analysis of
discrete methods for ODEs� since most of the formulas used in practice are of
high order and fairly complicated� They go somewhat further with the simpler
formulas used for PDEs�

The de�nition of order of accuracy suggests amethod of undetermined

coe�cients for deriving linear multistep formulas� having decided somehow
which �j and �j are permitted to be nonzero� simply adjust these parameters
to make p as large as possible� If there are q parameters� not counting the
�xed value �s��� then the equations 
������� with ��m� q�� constitute a
q�q linear system of equations� If this system is nonsingular� as it usually is�
it must have a unique solution that de�nes a linear multistep formula of order
at least p� q��� See Exercise ������

The method of undetermined coe�cients can also be described in another�
equivalent way that was hinted at in Exercise ������ It can be shown that any
consistent linear multistep formula computes the solution to an initial�value
problem exactly in the special case when that solution is a polynomial p
t�
of degree L� provided that L is small enough� The order of accuracy p is the
largest such L 
see Exercise ������� To derive a linear multistep formula for a
particular choice of available parameters �j and �j � one can choose the param�
eters in such a way as to make the formula exact when applied to polynomials
of as high a degree as possible�
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At this point it may appear to the reader that the construction of linear
multistep formulas is a rather uninteresting matter� Given s� �� why not sim�
ply pick �	� � � � ��s�� and �	� � � � ��s so as to achieve order of accuracy �s! The
answer is that for s� �� the resulting formulas are unstable and consequently
useless 
see Exercise ������� In fact� as we shall see in Section ���� a famous
theorem of Dahlquist asserts that a stable s�step linear multistep formula can
have order of accuracy at most s��� Consequently� nothing can be gained by
permitting all �s�� coe�cients in an s�step formula to be nonzero� Instead�
the linear multistep formulas used in practice usually have most of the �j or
most of the �j equal to zero� In the next section we shall describe several
important families of this kind�

And there is another reason why the construction of linear multistep for�
mulas is interesting� It can be made exceedingly slick" We shall now describe
how the formulas above can be analyzed more compactly� and the question of
order of accuracy reduced to a question of rational approximation� by manip�
ulation of formal power series�

Taking j �� in 
������ gives the identity

u
tn��� � u
tn��kut
tn��
�
�k

�utt
tn�� � � � �

Since u
tn����Zu
tn�� here is another way to express the same fact�

Z � ��
kD�� �
��
kD�

�� �
��
kD�

�� � � � � ekD � 
�������

Like 
������� this formula is to be interpreted as a formal identity� the idea
is to use it as a tool for manipulation of terms of series without making any
claims about convergence� Inserting 
������� in 
������ and comparing with

������ gives

L � 	
ekD ��kD

ekD � � C	�C�
kD��C�
kD�
�� � � � � 
�������

In other words� the coe�cients Cj of 
������ are nothing else than the Taylor

series coe�cients of the function 	
ekD ��kD

ekD � with respect to the argu�
ment kD� If we let � be an abbreviation for kD� this equation becomes even
simpler�

L � 	
e����

e�� � C	�C���C��
�� � � � � 
�������

With the aid of a symbolic algebra system such as Macsyma� Maple� or Mathe�
matica� it is a trivial matter to make use of 
������� to compute the coe�cients
Cj for a linear multistep formula if the parameters �j and �j are given� See
Exercise ������

By de�nition� a linear multistep formula has order of accuracy p if and
only if the the term between the equal signs in 
������� is #
�p��� as �
 ��
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Since 

e�� is an analytic function of �� if it is nonzero at ��� we can divide
through to conclude that the linear multistep formula has order of accuracy p
if and only if

	
e��



e��
� ��#
�p��� as �
 �� 
�������

The following theorem restates this conclusion in terms of the variable z� e��

LINEAR MULTISTEP FORMULAS AND RATIONAL APPROXIMATION

Theorem ���� A linear multistep formula with 

�� 	� � has order of
accuracy p if and only if

	
z�



z�
� logz�#

z���p���

�
h

z���� �

�
z���
�� �

�
z���
���� �

i
�#

z���p���


�����	�

as z
 �� It is consistent if and only if

	
��� � and 	�
��� 

��� 
�������

Proof� To get from 
������� to the �rst equality of 
�����	�� we make the
change of variables z� e�� �� logz� noting that #
�p��� as �
 � has the same
meaning as #

z���p��� as z
 � since e��� and d
e���d� 	�� at ���� The
second equality of 
�����	� is just the usual Taylor series for logz�

To prove 
�������� let 
�����	� be written in the form

	
z� � 

z�
z����O

z������#

z���p����

or by expanding 	
z� and 

z� about z���

	
���
z���	�
�� � 
z���

���O

z������#

z���p���� 
�������

Matching successive powers of z� �� we obtain 	
�� � �� p � � and p �
�� 	�
�� � 

��� p 	� �� Thus 
������� is equivalent to p� �� which is the
de�nition of consistency�

In Theorem ��� the ODE context of a linear multistep formula has van�
ished entirely� leaving a problem in the mathematical �eld known as approxi�
mation theory� Questions of approximation underlie most discrete methods
for di
erential equations� both ordinary and partial�
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EXAMPLE ������ The trapezoid rule 	������ has 
	z� � z�� and �	z� � �
� 	z
��� Since


	��� 
 and 
�	��� ���	��� the formula is consistent� Comparing 	������� with the expan�
sion


	z�

�	z�
�

z��
�
� 	z
��

�
z��

�
 �
� 	z���

� 	z���

�
�� z��

�



	z����

�
��� �

�

con�rms that the trapezoid rule has order � and error constant � �
�� �

This approach to linear multistep formulas by rational approximation is
closely related to the methods of generating functions described in several
of the references� It is also the basis of the method of analysis by order stars
described later in this chapter� For ordinary di
erential equations with special
structure� such as highly oscillatory behavior� it is sometimes advantageous to
approximate logz at one or more points other than z��� this is the idea behind
the frequency��tted or mode�dependent formulas discussed by Gautschi

������ Liniger and Willoughby 
������ Kuo and Levy 
������ and others� See
Exercise ������

EXERCISES

� ������ Show by the method of undetermined coe�cients that

vn	� � ��vn
�vn��
k
�
�fn
�fn��

�
	�������

is the most accurate ��step explicit linear multistep formula� with order of accuracy p���
In Section ��� we shall see that 	������� is unstable and hence useless in practice�

� ������ Consider the third�order backwards di�erentiation formula 	�������

�a� What are 
	z� and �	z��

�b� Apply Theorem ��� to verify consistency�

�c� Apply Theorem ��� to verify that the order of accuracy is ��

� ������ Optimal formulas with �nite step size� The concept of order of accuracy is based
on the limit k� 
� but one can also devise formulas on the assumption of a �nite step size
k � 
� For example� an Euler�like formula might be de�ned by

vn	� � vn
�	k�kfn 	�������

for some function �	k� with �	k�� � as k� 
�

�a� What choice of �	k� makes 	������� exact when applied to the equation ut�u�

�b� ODEs of practical interest contain various time scales� so it is not really appropriate
to consider just ut� u� Suppose the goal is to approximate all problems ut� au with
a � �
��� as accurately as possible� State a de�nition of �as accurately as possible�
based on the L� norm of the error over a single time step� and determine the resulting
function �	k��
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������� ����	� Numerical experiments� Consider the scalar initial�value problem

ut	t�� ecos�tu�t�� for t� �
���� u	
�� 
�

In this problem you will test four numerical methods� 	i� Euler� 	ii� Midpoint� 	iii� Fourth�
order Adams�Bashforth� and 	iv� Fourth�order Runge�Kutta� de�ned by

a �� kf	vn� tn��

b �� kf	vn
a��� tn
k����

c �� kf	vn
b��� tn
k����

d �� kf	vn
c� tn
k��

vn	� �� vn
 �
� 	a
�b
�c
d� �

	�������

�a� Write a computer program to implement 	������� in high precision arithmetic 	�� digits
or more�� Run it with k����� ���� � � � until you are con�dent that you have a computed
value v	�� accurate to at least � digits� This will serve as your �exact solution�� Make
a computer plot or a sketch of v	t�� Store appropriate values from your Runge�Kutta
computations for use as starting values for the multistep formulas 	ii� and 	iii��

�b� Modify your program so that it computes v	�� by each of the methods 	i� 	iv� for the
sequence of time steps k��������� � � � ������� Make a table listing v	�� and v	���u	��
for each method and each k�

�c� Draw a plot on a log�log scale of four curves representing jv	���u	��j as a function of
the number of evaluations of f � for each of the four methods� 	Make sure you calculate
each fn only once� and count the number of function evaluations for the Runge�Kutta
formula rather than the number of time steps��

�d� What are the approximate slopes of the lines in 	c�� and why� 	If you can�t explain
them� there may be a bug in your program�very likely in the speci�cation of initial
conditions�� Which of the four methods is most e�cient�

�e� If you are programming in Matlab� solve this same problem with the programs ode��
and ode�� with eight or ten di�erent error tolerances� Measure how many time steps
are required for each run and how much accuracy is achieved in the value u	��� and add
these new results to your plot of 	c�� What are the observed orders of accuracy of these
adaptive codes� How do they compare in e�ciency with your non�adaptive methods
	i� 	iv��

� ����
� Statistical e�ects
 It was stated above that if local errors of magnitude O	kp	�� are
made at each of "	k��� steps� then the global error will have magnitude O	kp�� However�
one might argue that more likely� the local errors will behave like random numbers of
order O	kp	��� and will accumulate in a square�root fashion according to the principles of
a random walk� giving a smaller global error O	kp	����� Experiments show that for most
problems� including those of Example ����� and Exercise ������ this optimistic prediction is
invalid� What is the fallacy in the random walk argument� Be speci�c� citing an equation
in the text to support your answer�

� ������ Prove the lemma alluded to on p� ��� An s�step linear multistep formula has order of
accuracy p if and only if� when applied to an ordinary di�erential equation ut� q	t�� it gives
exact results whenever q is a polynomial of degree 	 p� but not whenever q is a polynomial
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of degree p
�� 	Assume arbitrary continuous initial data u� and exact numerical initial
data v�� � � � �v

s����

� ������ If you have access to a symbolic computation system� carry out the suggestion on
p� ��� write a short program which� given the parameters �j and 	j for a linear multistep
formula� computes the coe�cients C��C�� � � �� Use your program to verify the results of
Exercises ����� and ������ and then explore other linear multistep formulas that interest
you�
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���� Derivation of linear multistep formulas

The oldest linear multistep formulas are the Adams formulas�

vn	s�vn	s�� � k

sX
j
�

	jf
n	j � 	������

which date to the work of J� C� Adams� as early as ����� In the notation of 	������� we
have �s � �� �s�� ���� and �� � � � � � �s�� � 
� and the �rst characteristic polynomial
is 
	z� � zs�zs��� For each s� �� the s�step Adams�Bashforth and Adams�Moulton
formulas are the optimal explicit and implicit formulas of this form� respectively� �Optimal�
means that the available coe�cients f	jg are chosen to maximize the order of accuracy� and
in both Adams cases� this choice turns out to be unique�

We have already seen the ��step Adams�Bashforth and Adams�Moulton formulas� they
are Euler�s formula 	������ and the trapezoid formula 	������� respectively� The fourth�order
Adams�Bashforth and Adams�Moulton formulas� with s� � and s� �� respectively� were
listed above as 	����!� and 	������� The coe�cients of these and other formulas are listed in
Tables ����� ����� on the next page� The �stencils� of various families of linear multistep
formulas are summarized in Figure ������ which should be self�explanatory�

To calculate the coe�cients of Adams formulas� there is a simpler and more enlight�
ening alternative to the method of undetermined coe�cients mentioned in the last section�
Think of the values fn� � � � �fn	s�� 	A�B� or fn� � � � �fn	s 	A�M� as discrete samples of a
continuous function f	t�� f	u	t�� t� that we want to integrate�

u	tn	s��u	tn	s��� �

Z t
n�s

t
n�s��

ut	t�dt �

Z t
n�s

t
n�s��

f	t�dt�

as illustrated in Figure �����a� 	Of course fn� � � � �fn	s will themselves be inexact due to
earlier errors in the computation� but we ignore this for the moment�� Let q	t� be the unique
polynomial of degree at most s�� 	A�B� or s 	A�M� that interpolates these data� and set

vn	s�vn	s�� �

Z t
n�s

t
n�s��

q	t�dt� 	������

Since the integral is a linear function of the data ffn	jg� with coe�cients that can be
computed once and for all� 	������ implicitly de�nes a linear multistep formula of the Adams
type 	�������

EXAMPLE ������ Let us derive the coe�cients of the �nd�order Adams�Bashforth for�
mula� which are listed in Table ������ In this case the data to be interpolated are fn and

�the same Adams who �rst predicted the existence of the planet Neptune
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Adams� Adams� Generalized Backwards
Bashforth Moulton Nystr�om Milne�Simpson Di
erentiation

�j �j �j �j �j �j �j �j �j �j j

� � � � � � � � n�s

� � � � � � � n�s��

� � � � � � � n�s��
���

���
���

���
���

���

� � � � � n

Figure ������ Stencils of various families of linear multistep formulas�

number
of steps s order p �s �s�� �s�� �s�� �s��

� � � � �EULER�

� � � �
� ��

�

� � � ��
�� ���

��
	
��

� � � 		
�� �	


��
��
�� � 


��

Table ������ Coe�cients f�jg of Adams�Bashforth formulas�

number
of steps s order p �s �s�� �s�� �s�� �s��

� � � �BACKWARD EULER�

� � �
�

�
� �TRAPEZOID�

� � 	
��

�
�� � �

��

� � 

��

�

�� � 	

��
�
��

� � �	�
��


���
��
 ����

��

�
�
��
 � �


��


Table ������ Coe�cients f�jg of Adams�Moulton formulas�

number
of steps s order p �s �s�� �s�� �s�� �s�� �s

� � � �� �BACKWARD EULER� �

� � � ��
�

�
�

�
�

� � � ���
��



�� � �

��
�
��

� � � ���
�	

��
�	 ���

�	
�
�	

��
�	

Table ������ Coe�cients f�jg and �s of backwards di
erentiation formulas�
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fn	�� and the interpolant is the linear polynomial q	t� � fn	��k��	fn	��fn�	tn	�� t��
Therefore 	������ becomes

vn	��vn	� �

Z t
n��

t
n��

�
fn	��k��	fn	��fn�	tn	��t�

�
dt

� kfn	��k��	fn	��fn�

Z t
n��

t
n��

	tn	��t�dt

� kfn	��k��	fn	��fn�	� �
�k

��

�
�

�
kfn	�� �

�
kfn� 	������

o

o

o
o

o

*

*

*
*

* o

o

o
o

o

*

*

*
*

*
fn

fn�s��

fn�s

tn�s�� tn�s

vn

vn�s

tn�s

�

q
t�

�

q
t�


a� Adams 
b� backwards di
erentiation

Figure ��	��� Derivation of Adams and backwards di
erentiation
formulas via polynomial interpolation�

More generally� the coe�cients of the interpolating polynomial q can be
determined with the aid of the Newton interpolation formula� To begin
with� consider the problem of interpolating a discrete function fyng in the
points �� � � � �� by a polynomial q
t� of degree at most �� Let $ and r denote
the forward and backward di�erence operators


$ � Z��� r � ��Z��� 
������

where � represents the identity operator� For example�

$yn � yn���yn� $�yn � yn����yn���yn�

Also� let
�
a
j

�
denote the binomial coe�cient �a choose j��

�
a

j

�
�

a
a���
a��� � � � 
a�j���

j"
� 
������
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de�ned for integers j� � and arbitrary a� C � The following is a standard result
that can be found in many books of numerical analysis and approximation
theory�

NEWTON INTERPOLATION FORMULA

Theorem ���� The polynomial

q
t� �

	
��

�
t

�

�
$�

�
t

�

�
$�� � � ��

�
t

�

�
$�



y	 
������

is the unique polynomial of degree at most � that interpolates the data
y	� � � � �y� in the points �� � � � ���

Proof� First of all� from 
������ it is clear that
�
t
j

�
is a monomial of degree

j� and since 
������ describes a linear combination of such terms with �� j� ��
q
t� is evidently a polynomial of degree at most ��

We need to show that q
t� interpolates y	� � � � �y�� To this end� note that
Z ���$� and therefore

Zj � 
��$�j � ��

�
j

�

�
$�

�
j

�

�
$�� � � ���

�
j

j

�
$j

for any integer j� � 
the binomial formula�� If �� j� � we may equally well
extend the series to term ��

Zj � ��

�
j

�

�
$�

�
j

�

�
$�� � � ��

�
j

�

�
$� �

since
�
j
m

�
�� for m�j� By taking t� j in 
������� this identity implies that

q
j��Zjy	 for �� j� �� In other words� q
t� interpolates the data as required�
Finally� uniqueness of the interpolating polynomial is easy to prove� If

q�
t� and q�
t� are two polynomials of degree � � that interpolate the data�
then q�� q� is polynomial of degree � � that vanishes at the interpolation
points� which implies q�� q� � � identically since a nonzero polynomial of
degree � � can have at most � zeros�

We want to apply Theorem ��� to the derivation of Adams�Bashforth
formulas� To do this� we need a version of the theorem that is normalized
di
erently and considerably uglier� though equivalent� Let the points �� � � � ��
be replaced by the points t	� � � � � t�� � Then from Theorem ���� or by a proof
from scratch� one can readily show that the polynomial

q
t� �

	
��

�
�t�k

�

�
r�

�
�t�k

�

�
r���� ��
����

�
�t�k

�

�
r�



y	 
������
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is the unique polynomial of degree at most � that interpolates the data y��� � � � �
y	 in the points t�� � � � � � t	� Note that among other changes� $ has been
replaced by r�

Now let us replace y by f � � by s��� and t by t�tn�s��� hence t��� � � � � t	
by tn� � � � � tn�s��� Equation 
������ then becomes

q
t� �

	
��

�

tn�s���t��k

�

�
r� � � ��
���s��

�

tn�s���t��k

s��

�
rs��



fn�s���


����	�
Inserting this expression in 
������ gives

vn�s�vn�s�� � k
s��X
j�	


jr
jfn�s���

where


j �

���j

k

Z tn	s

tn	s��

�

tn�s���t��k

j

�
dt � 
���j

Z �

	

�
��

j

�
d��

The �rst few values 
j are
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�
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��
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������
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�
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� 
��

��

���
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��

��
���


�	�����
�

The following theorem summarizes this derivation and some related facts�
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ADAMS�BASHFORTH FORMULAS

Theorem ��	� For any s � �� the s�step Adams�Bashforth formula has
order of accuracy s� and is given by

vn�s � vn�s���k
s��X
j�	


jr
jfn�s��� 
j � 
���

j
Z �

	

�
��

j

�
d�� 
�������

For j� �� the coe�cients 
j satisfy the recurrence relation


j�
�

�

j���

�

�

j��� � � ��

�

j��

	 � �� 
�������

Proof� We have already shown above that the coe�cients 
������� corre�
spond to the linear multistep formula based on polynomial interpolation� To
prove the theorem� we must show three things more� that the order of accu�
racy is as high as possible� so that these are indeed Adams�Bashforth formulas�
that the order of accuracy is s� and that 
������� holds�

The �rst claim follows from the lemma stated in Exercise ������ If f
u�t�
is a polynomial in t of degree � s� then q
t�� f
u�t� in our derivation above� so
the formula 
������ gives exact results and its order of accuracy is accordingly
� s� On the other hand any other linear multistep formula with di
erent
coe�cients would fail to integrate q exactly� since polynomial interpolants are
unique� and accordingly would have order of accuracy � s� Thus 
������� is
indeed the Adams�Bashforth formula�

The second claim can also be based on Exercise ������ If the s�step Adams�
Bashforth formula had order of accuracy �s� it would be exact for any problem
ut� q
t� with q
t� equal to a polynomial of degree s��� But there are nonzero
polynomials of this degree that interpolate the values f	 � � � �� f s � �� from
which we can readily derive counterexamples in the form of initial�value prob�
lems with v
ts���� � but u
ts��� 	���

Finally� for a derivation of 
�������� the reader is referred to Henrici 
�����
or Hairer� N�rsett  Wanner 
��	���

EXAMPLE ������ CONTINUED� To rederive the �nd�order Adams�Bashforth formula
directly from 	�����
�� we calculate

vn	� � vn	�
k��f
n	�
k��	f

n	��fn� � vn	�
k
�
�
�f

n	�� �
�f

n
�
�

EXAMPLE ������ To obtain the third�order Adams�Bashforth formula� we increment n
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to n
� in the formula above and then add one more term k��r�fn	� to get

vn	� � vn	�
k
�
�
�f

n	�� �
�f

n	�
�

 �

��k
�
fn	���fn	�
fn

�
� vn	�
k

�
��
��f

n	�� ��
��f

n	�
 �
��f

n
�
�

which con�rms the result listed in Table ������

For Adams�Moulton formulas the derivation is entirely analogous� We
have

vn�s�vn�s�� � k
sX

j�	


�j r
jfn�s�

where


�j �

���j

k

Z tn	s

tn	s��

�

tn�s�t��k

j

�
dt � 
���j

Z 	

��

�
��

j

�
d��

and the �rst few values 
�j are


�	 ���� 
�� ��
�

��
� 
�� ��
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	����
�


�� ��
�

�
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�� ��
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��
� 
�� ��

�
�

�����
� 
�������


�� ��
�

��
� 
�� ��

�

�	�
� 
�� ��

�����

�	�����
�

Notice that these numbers are smaller than before� an observation which is
related to the fact that Adams�Moulton formulas generally have smaller error
constants than the corresponding Adams�Bashforth formulas�

The analog of Theorem ��� is as follows�

ADAMS�MOULTON FORMULAS

Theorem ���� For any s � �� the s�step Adams�Moulton formula� has
order of accuracy s��� and is given by

vn�s � vn�s���k
sX

j�	


�j r
jfn�s� 
�j � 
���

j
Z 	

��

�
��

j

�
d�� 
�������

For j� �� the coe�cients 
�j satisfy the recurrence relation


�j �
�

�

�j���

�

�

�j��� � � ��

�

j��

�	 � �� 
�������

�The 
	�step Adams�Moulton formula� of this theorem actually has s��
 as indicated in Table �����

because of the nonzero coe�cient ���
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Proof� Analogous to the proof of Theorem ����

Both sets of coe�cients f
jg and f

�
j g can readily be converted into coef�

�cients f�jg of our standard representation 
�������� and the results for s� �
are listed above in Tables ����� and ������

Besides Adams formulas� the most important family of linear multistep
formulas dates to Curtiss and Hirschfelder in ����� and is also associated with
the name of C� W� Gear� The s�step backwards di�erentiation formula

is the optimal implicit linear multistep formula with �	� � � �� �s����� 
An
example was given in 
�������� Unlike the Adams formulas� the backwards dif�
ferentiation formulas allocate the free parameters to the f�jg rather than the
f�jg� These formulas are �maximally implicit� in the sense that the function
f enters the calculation only at the level n��� For this reason they are the
hardest to implement of all linear multistep formulas� but as we shall see in
xx���%��	� they are also the most stable�

To derive the coe�cients of backwards di
erentiation formulas� one can
again make use of polynomial interpolation� Now� however� the data are sam�
ples of v rather than of f � as suggested in Figure �����b� Let q be the unique
polynomial of degree � s that interpolates vn� � � � �vn�s� The number vn�s is
unknown� but it is natural to de�ne it implicitly by imposing the condition

qt
tn�s� � fn�s� 
�������

Like the integral in 
������� the derivative in 
������� represents a linear func�
tion of the data� with coe�cients that can be computed once and for all� and
so this equation constitutes an implicit de�nition of a linear multistep formula�
The coe�cients for s� � were listed above in Table ������

To convert this prescription into numerical coe�cients� one can again
apply the Newton interpolation formula 
see Exercise ������� However� the
proof below is a slicker one based on rational approximation and Theorem ����

BACKWARDS DIFFERENTIATION FORMULAS

Theorem ��
� For any s� �� the s�step backwards di�erentiation formula
has order of accuracy s� and is given by

sX
j��

�

j
rjvn�s � kfn�s� 
�������


Note that 
������� is not quite in the standard form 
�������� it must be
normalized by dividing by the coe�cient of vn�s��
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Proof� Let 	
z� and 

z� � zs be the characteristic polynomials corre�
sponding to the s�step backwards di
erentiation formula� 
Again we have
normalized di
erently from usual�� By Theorem ���� since logz �� logz���
the order of accuracy is p if and only if

	
z�

zs
� � logz���#

z���p���

� �
h

z������ �

�
z
������� �

�
z
��������� �

i
�#

z���p����

that is�

	
z� � zs
h

��z���� �

�
��z����� �
�
��z����� � � �

i
�#

z���p����

By de�nition� 	
z� is a polynomial of degree at most s with 	
�� 	� �� equiv�
alently� it is zs times a polynomial in z�� of degree exactly s� Since 	
z�
maximizes the order of accuracy among all such polynomials� the last formula
makes it clear that we must have

	
z� � zs
�

��z���� � � ��

�

s

��z���s

�
�

with order of accuracy s� This is precisely 
��������

These three families of linear multistep formulas�Adams�Bashforth� Ad�
ams�Moulton� and backwards di
erentiation�are the most important for prac�
tical computations� Other families� however� have also been developed over the
years� The s�step Nystr�om formula is the optimal explicit linear multistep
formula with 	
z�� zs�zs��� that is� �s��� �s������ and �j �� otherwise�
The s�step generalized Milne�Simpson formula is the optimal implicit lin�
ear multistep formula of the same type� Coe�cients for these formulas can be
obtained by the same process described in Figure �����a� except that now q
t�
is integrated from tn�s�� to tn�s� Like the Adams and backwards di
erenti�
ation formulas� the s�step Nystr&om and generalized Milne�Simpson formulas
have exactly the order of accuracy one would expect from the number of free
parameters 
s and s��� respectively�� with one exception� the generalized
Milne�Simpson formula with s�� has order �� not �� This formula is known
as the Simpson formula for ordinary di
erential equations�

vn�� � vn�
�

�
k
fn��fn���fn���� 
�������
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EXERCISES

� ��	��� Second�order backwards di�erentiation formula� Derive the coe�cients of the ��step
backwards di�erentiation formula in Table ������

�a� By the method of undetermined coe�cients�

�b� By Theorem ���� making use of the expansion z��	z����
�	z���
��

�c� By interpolation� making use of Theorem ����

� ��	��� Backwards di�erentiation formulas� Derive 	������� from Theorem ����

� ��	��� Third�order Nystr�om formula� Determine the coe�cients of the third�order Nystr$om
formula by interpolation� making use of Theorem ����

� ��	�	� Quadrature formulas� What happens to linear multistep formulas when the function
f	u�t� is independent of u� To be speci�c� what happens to Simpson�s formula 	�����!��
Comment on the e�ect of various strategies for initializing the point v� in an integration of
such a problem by Simpson�s formula�
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���� Stability

It is time to introduce one of the central themes of this book� stability� Before ���
� the
word stability rarely if ever appeared in papers on numerical methods� but by ���
� at which
time computers were widely distributed� its importance had become universally recognized��
Problems of stability a�ect almost every numerical method for solving di�erential equations�
and they must be confronted head�on�

For both ordinary and partial di�erential equations� there are two main stability ques�
tions that have proved important over the years�

Stability�y If t� 
 is held �xed� do the computed values v	t� remain bounded as k� 
�

Eigenvalue stability� If k � 
 is held �xed� do the computed values v	t� remain
bounded as t���

These two questions are related� but distinct� and each has important applications� We shall
consider the �rst in this and the following section� and the second in xx��!�����

The motivation for all discussions of stability is the most fundamental question one
could ask about a numerical method� will it give the right answer� Of course one can never
expect exact results� so a reasonable way to make the question precise for the initial�value
problem 	������ is to ask� if t� 
 is a �xed number� and the computation is performed with
various step sizes k � 
 in exact arithmetic� will v	t� converge to u	t� as k� 
 �

A natural conjecture might be that for any consistent linear multistep formula� the
answer must be yes� After all� as pointed out in x���� such a method commits local errors of
size O	kp	�� with p� �� and there are a total of "	k��� time steps� But a simple argument
shows that this conjecture is false� Consider a linear multistep formula based purely on
extrapolation of previous values fvng� such as

vn	� � �vn	��vn� 	������

This is a �rst�order formula with 
	z�� 	z���� and �	z�� 
� and in fact we can construct
extrapolation formulas of arbitrary order of accuracy by taking 
	z� � 	z���s� Yet such a
formula cannot possibly converge to the correct solution� for it uses no information from the
di�erential equation��

Thus local accuracy cannot be su�cient for convergence� The surprising fact is that
accuracy plus an additional condition of stability is su�cient� and necessary too� In fact this
is a rather general principle of numerical analysis� �rst formulated precisely by Dahlquist for
ordinary di�erential equations and by Lax and Richtmyer for partial di�erential equations�
both in the ���
�s� Strang 	����� calls it the �fundamental theorem of numerical analysis��

�See G� Dahlquist
 
�� years of numerical instability
� BIT �� �����	
 �����	��
yStability is also known as 
zero�stability� or sometimes 
D�stability� for ODEs
 and 
Lax stability�
or 
Lax�Richtmyer stability� for PDEs� Eigenvalue stability is also known as 
weak stability� or

absolute stability� for ODEs
 and 
time�stability
� 
practical stability� or 
P�stability� for PDEs�
The reason for the word 
eigenvalue� will become apparent in xx���
����

�Where exactly did the argument suggesting global errors O�kp� break down� Try to pinpoint it
yourself� the answer is in the next section�
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Theorem ���
 in the next section gives a precise statement for the case of linear multistep
formulas� and for partial di�erential equations� see Theorem ����

We begin with a numerical experiment�

EXAMPLE ������ In the spirit of Example ������ suppose we solve the initial�value
problem

ut�u� t� �
���� u	
�� � 	������

by three di�erent ��step explicit methods� the extrapolation formula 	������� the second�
order Adams�Bashforth formula 	������� and the �optimal� ��step formula 	�������� Again we
take exact quantities enk where needed for starting values� Figure ����� shows the computed
functions v	t� for k�
�� and 
��� In the �rst plot� both of the higher�order formulas appear
to be performing satisfactorily� In the second� however� large oscillations have begun to
develop in the solution based on 	�������� Obviously 	������� is useless for this problem�

Table ����� makes this behavior quantitative by listing the computed results v	�� for k�

��� 
��� 
�
�� 
�
��� As k decreases� the solution based on 	������ converges to an incorrect
solution� namely the function t
�� and the solution based on 	������� diverges explosively�
Notice that none of the numbers are preceded by a 
 � In this example the instability has
been excited by discretization errors� not rounding errors�

Figure ����� gives a fuller picture of what is going on in this example by plotting the
error jv	���ej as a function of k 	on a log scale� with smaller values of k to the right� for the
same three linear multistep formulas as well as the fourth�order Adams�Bashforth formula
	����!�� The two Adams�Bashforth formulas exhibit clean second�order and fourth�order
convergence� as one would expect� showing in the plot as lines of slope approximately�� and
��� respectively� The extrapolation formula 	������ exhibits zeroth�order convergence�in
other words divergence� with the error approaching the constant e��� The formula 	�������
diverges explosively�

It is not di�cult to see what has gone wrong with 	�������� For simplicity� assume k
is negligible� Then 	������� becomes

vn	�
�vn	���vn � 
� 	������

a second�order recurrence relation for fvng� It is easy to verify that both vn � � and
vn � 	���n are solutions of 	������� 	Caution� the n in vn is a superscript� but the n in
	���n is an exponent�� Since an arbitrary solution to 	������ is determined by two initial
values v� and v�� it follows that any solution can be written in the form

vn � a	��n
b	���n 	������

for some constants a and b� What has happened in our experiment is that b has ended up
nonzero�there is some energy in the mode 	���n� and an explosion has taken place� In
fact� if the computation with k�
�
�� is carried out to one more time step� vn takes the
value ���
��
�
� which is �������� times the �nal quantity listed in the table� So the
assumption that k was negligible was not too bad�

Although Example ����� is very simple� it exhibits the essential mechanism
of instability in the numerical solution of ordinary di
erential equations by
linear multistep formulas� a recurrence relation that admits an exponentially



���� STABILITY TREFETHEN ���� � ��


 
�� � 
 
�� �



�

�

e




�

�

e

	�������

AB�

	������

t t

�a� k�
�� �b� k�
��

Figure ������ Solution of 	������ by three explicit two�step linear multistep for�
mulas� The high�order formula 	������� looks good at �rst� but becomes unstable
when the time step is halved�

k�
�� k�
�� k�
�
� k�
�
��

Extrapolation 	������ ���
!
� ��
��!� ��
���� ��
���


�nd�order A�B 	������ ����!!� ��!
��� ��!���� ��!�!�


�optimal� 	������� ��!���� �
���!�
 �������
� �������
��

Table ������ Computed values v	��� e for the initial�value problem 	�������

k
�
�� �
��

�
���

�

�
��

AB�

AB�

	������

	�������

Figure ������ Error jv	���ej as a function of time step k for the solution of
	������ by four explicit linear multistep formulas�
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growing solution zn for some jzj � �� Such a solution is sometimes known
as a parasitic solution of the numerical method� since it is introduced by
the discretization rather than the ordinary di
erential equation itself� It is a
general principle that if such a mode exists� it will almost always be excited by
either discretization or rounding errors� or by errors in the initial conditions� Of
course in principle� the coe�cient b in 
������ might turn out to be identically
zero� but in practice this possibility can usually be ignored� Even if b were zero
at t��� it would soon become nonzero due to variable coe�cients� nonlinearity�
or rounding errors� and the zn growth would then take over sooner or later��

The analysis of Example ����� can be generalized as follows� Given any
linear multistep formula� consider the associated recurrence relation

	
Z�vn �
sX

j�	

�jv
n�j � � 
������

obtained from 
������ with k��� We de�ne�

A linear multistep formula is stable if all solutions fvng of the recurrence
relation �	����� are bounded as n

�

This means that for any function fvng that satis�es 
������� there exists a con�
stant M � � such that jvnj �M for all n� �� We shall refer to the recurrence
relation itself as stable� as well as the linear multistep formula�

There is an elementary criterion for determining stability of a linear mul�
tistep formula� based on the characteristic polynomial 	�

ROOT CONDITION FOR STABILITY

Theorem ���� A linear multistep formula is stable if and only if all the
roots of 	
z� satisfy jzj � �� and any root with jzj�� is simple�

A �simple� root is a root of multiplicity ��

First proof� To prove this theorem� we need to investigate all possible
solutions fvng� n� �� of the recurrence relation 
������� Since any such solu�
tion is determined by its initial values v	� � � � �vs��� the set of all of them is a

�A general observation is that when any linear process admits an exponentially growing solution in
theory
 that growth will almost invariably appear in practice� Only in nonlinear situations can the
existence of exponentially growing modes fail to make itself felt� A somewhat far��ung example
comes from numerical linear algebra� In the solution of an N�N matrix problems by Gaussian
elimination with partial pivoting�a highly nonlinear process�an explosion of rounding errors at
the rate �N�� can occur in principle
 but almost never does in practice �Trefethen � Schreiber


Average�case stability of Gaussian elimination
� SIAM J
 Matrix Anal
 Applics

 ���	��
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vector space of dimension s� Therefore if we can �nd s linearly independent
solutions vn� these will form a basis of the space of all possible solutions� and
the recurrence relation will be stable if and only if each of the basis solutions
is bounded as n

�

It is easy to verify that if z is any root of 	
z�� then

vn� zn 
������

is one solution of 
������� 
Again� on the left n is a superscript and on the
right it is an exponent� If z � � we de�ne z	 � ��� If 	 has s distinct roots�
then these functions constitute a basis� Since each function 
������ is bounded
if and only if jzj � �� this proves the theorem in the case of distinct roots�

On the other hand suppose that 	
z� has a root z of multiplicity m� ��
Then it can readily be veri�ed that each of the functions

vn�nzn� vn�n�zn� � � � � vn�nm��zn 
������

is an additional solution of 
������� and clearly they are all linearly independent
since degree�
m��� polynomial interpolants in m points are unique� to say
nothing of
 points" 
If z��� we replace njzn by the function that takes the
value � at n� j and � elsewhere�� These functions are bounded if and only if
jzj� �� and this �nishes the proof of the theorem in the general case�

Alternative proof based on linear algebra� The proof above is simple and
complete� but there is another way of looking at Theorem ��� that involves a
technique of general importance� Let us rewrite the s�step recurrence relation
as a ��step matrix operation on vectors v of length s�

�
BBBBBBBBB�

vn��

vn��

���

vn�s



CCCCCCCCCA
�

�
BBBBBBBBBB�

� �

� �

� � � � � �

� �

��	 � � � ��s�� ��s��



CCCCCCCCCCA

�
BBBBBBBBB�

vn

vn��

���

vn�s��



CCCCCCCCCA
� 
����	�

That is�
vn���Avn� 
������

or after n steps�
vn�Anv	� 
�������

where An denotes the nth power of the matrix A� This is a discrete analog of
the reduction of higher�order ODEs to �rst�order systems described in x����
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The scalar sequence fvng will be bounded as n

 if and only if the vector
sequence fvng is bounded� and fvng will in turn be bounded if and only if the
elements of An are bounded� Thus we have reduced stability to a problem of
growth or boundedness of the powers of a matrix�

A matrix A of the form 
����	� is known as a companion matrix� and
one can verify that det
zI �A� � 	
z� for any z� where 	
z� is de�ned by

������ as usual�� In other words� the characteristic polynomial of the matrix
A is the same as the characteristic polynomial of the linear multistep formula�
Therefore the set of eigenvalues of A is the same as the set of roots of 	�
and these eigenvalues determine how the powers An behave asymptotically
as n

� To make the connection precise one can look at the similarity
transformation that brings A into Jordan canonical form�

A�SJS���

Here S is an s�s nonsingular matrix� and J is an s�s matrix consisting of all
zeros except for a set of Jordan blocks Ji along the diagonal with the form

Ji �

�
BBBBBBBBBBBB�

zi �
zi � �

� � � � � �

� zi �
zi



CCCCCCCCCCCCA
�

where zi is one of the eigenvalues of A� Every matrix has a Jordan canonical
form� and for matrices in general� each eigenvalue may appear in several Jordan
blocks� For a companion matrix� however� there is exactly one Jordan block for
each eigenvalue� with dimension equal to the multiplicitymi of that eigenvalue�

Proof� zI�A has rank � s�� for any z� since its upper�right 
s����
s���
block is obviously nonsingular� Such a matrix is called nonderogatory�� Now
the powers of A are

An � 
SJS��� � � �
SJS��� � SJnS���

so their growth or boundedness is determined by the growth or boundedness

�One way to verify it is to look for eigenvectors of the form ��� z� � � � � zs���T 
 where z is the eigenvalue�
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of the powers Jn� which can be written down explicitly�

Jni �

�
BBBBBBBBBBBBBBBBB�

zni
�
n
�

�
zn��
i � � �

�
n

mi��

�
z
n���mi
i

zni
�
n
�

�
zn��
i

� � � � � �
���

zni
�
n
�

�
zn��
i

�
zni
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�

If jzij� �� these elements approach � as n

� If jzij� �� they approach 
�
If jzij� �� they are bounded in the case of a ��� block� but unbounded if
mi� ��

The reader should study Theorem ��� and both of its proofs until he or she
is quite comfortable with them� These tricks for analyzing recurrence relations
come up so often that they are worth remembering�

EXAMPLE ������ Let us test the stability of various linear multistep formulas considered
up to this point� Any Adams�Bashforth or Adams�Moulton formula has 
	z� � zs�zs���
with roots f��
� � � � �
g� so these methods are stable� The Nystr$om and generalized Milne�
Simpson formulas have 
	z�� zs�zs��� with roots f�����
� � � � �
g� so they are stable too�
The scheme 	������� that caused trouble in Example ����� has 
	z�� z�
�z��� with roots
f����g� so it is certainly unstable� As for the less dramatically unsuccessful formula 	�������
it has 
	z� � z���z
�� 	z����� with a multiple root f���g� so it counts as unstable too
since it admits the growing solution vn�n� The higher�order extrapolation formula de�ned
by 
	z� � 	z���s� �	z� � 
 admits the additional solutions n��n�� � � � �ns��� making for an
instability more pronounced but still algebraic rather than exponential�

Note that by Theorem ���� any consistent linear multistep formula has a
root of 	
z� at z � �� and if the formula is stable� then Theorem ��� ensures
that this root is simple� It is called the principal root of 	� for it is the
one that tracks the di
erential equation� The additional consistency condition
	�
�� � 

�� of Theorem ��� amounts to the condition that if z is perturbed
away from �� the principal root behaves correctly to leading order�

In x��� an analogy was mentioned between linear multistep formulas and
recursive digital �lters� In digital signal processing� one demands jzj� � for
stability� why then does Theorem ��� contain the weaker condition jzj � �!
The answer is that unlike the usual �lters� an ODE integrator must remember
the past� even for values of t where f is zero� u is in general nonzero� If all
roots z satis�ed jzj� �� the in�uence of the past would die away exponentially�
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Theorem ��� leaves us in a remarkable situation� summarized in Figure
������ By Theorem ���� consistency is the condition that 	
z��

z� matches
log z to at least second order at z � �� By Theorem ���� stability is the con�
dition that all roots of 	
z� lie in jzj � �� with simple roots only permitted
on jzj� �� Thus the two crucial properties of linear multistep formulas have
been reduced completely to algebraic questions concerning a rational function�
The proofs of many results in the theory of linear multistep formulas� such as
Theorems ��	 and ��� below� consist of arguments of pure complex analysis of
rational functions� having nothing super�cially to do with ordinary di
erential
equations�

STABILITY
 zeros of 	
z� in unit disk� simple if on unit circle

ORDER OF ACCURACY p�

	
z�



z�
� logz�#

z���p���

CONSISTENCY� p� �

Figure ������ Stability� consistency� and order of accuracy as alge�
braic conditions on the rational function 	
z��

z��

The following theorem summarizes the stability of the standard families
of linear multistep formula that we have discussed�

STABILITY OF STANDARD LINEAR MULTISTEP FORMULAS

Theorem ���� The s�step Adams�Bashforth� Adams�Moulton� Nystr�om�
and generalized Milne�Simpson formulas are stable for all s� �� The s�step
backwards di�erentiation formulas are stable for �� s� �� but unstable for
s� ��

Proof� The results for the �rst four families of linear multistep formulas
follow easily from Theorem ���� as described in Example ������ The analy�
sis of backwards di
erentiation formulas is a more complicated matter� since
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the polynomials 	
z� are no longer trivial� Instability for s � � was recog�
nized numerically in the �����s 
Mitchell and Craggs� ������ but not proved
mathematically until ���� 
Cryer� ������ An elegant short proof of instability
for s� �� was devised by Hairer and Wanner in ��	� and can be found on
pp� ��	%��� of 
Hairer� N�rsett  Wanner� ��	���

To close this section we shall present an important result that is known as
the �rst Dahlquist stability barrier� In x��� we mentioned that an s�step
linear multistep formula can have order �s� why not simply use that high�
order formula and forget special classes like Adams and Nystr&om methods!
Dahlquist�s famous theorem con�rms that the answer is an impassable barrier
of stability�

FIRST DAHLQUIST STABILITY BARRIER

Theorem ���� The order of accuracy p of a stable s�step linear multistep
formula satis�es

p�

���
��
s�� if s is even�

s�� if s is odd�

s if the formula is explicit�


�������

Proof� Various proofs of Theorem ��� have been published� beginning with
the original one by Dahlquist in ����� More recent proofs have been based on
the beautiful idea of �order stars� introduced by Wanner� Hairer� and N�rsett

BIT� ���	�� The following argument is adapted from �A proof of the �rst
Dahlquist barrier by order stars�� by A� Iserles and S� P� N�rsett� BIT� ��	��
Though fundamentally correct� it is somewhat casual about geometric details�
for a more detailed treatment see that paper or the book Order Stars by the
same authors�

Let 	
z� and 

z� be the characteristic polynomials corresponding to a
stable s�step linear multistep formula of order of accuracy p� The key idea is
to look at level lines of the function we have been dealing with since 
�����	��

�
z� �
	
z�



z�
� logz� 
�������

This function is analytic throughout the complex plane except near zeros of


z�� provided one introduces a branch cut going to the point z � �� 
Alter�

natively� one can work with e��z� and eliminate the need for a branch cut��
In particular� �
z� is analytic at z � �� 
If 

�� � �� 	
z� and 

z� have a
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Figure ����	� Order star de�ned by 
������� for the �th�order Adams�
Bashforth formula� The zeros of 	
z� 
at z��� are marked by o and
the zeros of 

z� are marked by �� The ��fold daisy at z�� re�ects
the order of accuracy � of this formula� If there were a bounded�
shaded ��nger� that did not intersect the unit disk 
dashed�� the
formula would be unstable�

common factor z�� and the linear multistep formula is not in simplest form��
By Theorem ���� its behavior near there is

�
z� � C
z���p���O

z���p��� 
�������

for C � Cp���

�� 	� �� Now let A� the order star for the linear multistep
formula� be the set de�ned by

A� fz � C � Re�
z�� �g� 
�������

In other words� it is the inverse image of the right half�plane under �� Figure
����� shows the order star for the �th�order Adams�Bashforth formula�

The power of order stars comes from their ability to couple local and
global properties of a function by way of geometric arguments� The global
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property that concerns us is stability� the zeros of 	
z� must lie in the unit
disk� The local property that concerns us is order of accuracy� from 
�������
it follows that near z � �� A must look like a daisy with p�� evenly spaced
petals�or ��ngers�� as they are sometimes called� In Figure ����� the number
of �ngers is ��

Since the linear multistep formula is stable� all the zeros of 	
z� must lie
in A 
or possibly on its boundary in the case of a zero with jzj � ��� This
follows from 
������� and 
������� since the zeros have to satisfy jzj � �� hence
Re logz� �� �At this point some reasoning by the argument principle of com�
plex analysis is needed� which will be �lled in later�� The conclusion is this�
any bounded �nger of A 
i�e�� not extending to 
� must contain one of the
zeros of 	
z�� Consequence� for stability� every bounded �nger has to intersect

the unit disk�
To �nish the argument� let us now assume that the linear multistep for�

mula is explicit� similar arguments apply in the implicit case 
Exercise �������
Our goal is then to prove p� s� To do this we shall count zeros of Re�
z� on
the unit circle jzj��� Let M be this number of zeros� counted with multiplic�
ity� obviously M must be even� How big can M be! Note �rst that

�Re�
z� �
	
z�



z�
�

	
z�



z�
�

	
z�

z��	
z�

z�



z�

z�

on the unit circle jzj� �� since Relogz � � there� Since the linear multistep
formula is explicit� 

z� has degree � s��� so the numerator is a polynomial
of degree � �s��� which implies that M � being even� satis�es

M � �s��� 
�������

Now� how many zeros are implied by order of accuracy p! First� there is a zero
of multiplicity p�� at z��� In addition� there is a zero wherever the boundary
of A crosses the unit circle�in Figure ������ four such zeros altogether� To
count these� we note that 
p����� �ngers of A begin at z � � outside the
unit circle� One of these may be unbounded and go to in�nity� but the other

p����� must intersect the unit disk and cross the unit circle on the way� Two
of those may cross the unit circle just once 
one each in the upper and lower
half�planes�� but all the remaining 
p����� �ngers are trapped inside those
�ngers and must cross the unit circle twice� All told� we count

M � p������
p����� � �p��� 
�������

Combining 
������� and 
������� gives p� s� as required�
Similar arguments apply if the linear multistep formula is implicit�
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The restrictions of Theorem ��� are tight" In e
ect� they show� half of the
available parameters in a linear multistep formula are wasted�

Theorems ���� ��	� and ��� imply that the Adams�Bashforth and Nystr&om
formulas are all optimal in the sense that they attain the bound p� s for sta�
ble explicit formulas� and the Adams�Moulton and generalized Milne�Simpson
formulas of odd step number s are also optimal� with p � s��� Simpson�s
rule� with p� s��� is an example of an optimal implicit formula with even
step number� It can be shown that for any optimal implicit formula with even
step number s� the roots of 	
z� all lie on the unit circle jzj�� 
Henrici� �����
p� ����� Thus the stability of these formulas is always of a borderline kind�

EXERCISES

� ��
��� Backwards di�erentiation formulas� Show that the following backwards di�erentia�
tion formulas from Table ����� are stable� �a� s��� �b� s���

� ��
��� Prove�

�a� Any consistent ��step linear multistep formula is stable�

�b� Any consistent linear multistep formula with 
	z���	z� is unstable�

� ��
��� Consider the s�step explicit linear multistep formula of optimal order of accuracy of
the form vn	s� vn
k

Ps��
j
� 	jf

n	j �

�a� For which s is it stable�

�b� Derive the coe�cients for the case s���

�c� Likewise for s���

� ��
�	� Pad�e approximation� The type 	���� Pad�e approximant to log z at z�� is de�ned
as the unique rational function 
	z���	z� of type 	���� 	i�e�� with numerator of degree 	�
and denominator of degree 	 �� that satis�es


	z�

�	z�
� log z
O		z����	�	�� as z� �� 	�����!�

By Theorem ���� taking �� �� s gives the maximally accurate implicit s�step formula� with
order of accuracy at least p��s� and taking �� s� � � s�� gives the maximally accurate
explicit s�step formula� with order of accuracy at least p��s���

Without performing any calculations� but appealing only to the uniqueness of Pad%e approx�
imants and to theorems stated in this text� determine whether each of the following Pad%e
schemes is stable or unstable� and what it is called if we have given a name for it� In each
case� state exactly what theorems you have used�

�a� s��� explicit� �b� s��� implicit�

�c� s��� explicit� �d� s��� implicit�

�e� s��� explicit� �f� s��� implicit�

�g� If you have access to a symbolic calculator such as Macsyma� Maple� or Mathematica�
use it to calculate the coe�cients of the linear multistep formulas �a���f�� and con�rm
that the names you have identi�ed above are correct�
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� ��
�
� Linear combinations of linear multistep formulas� In Example ����� we showed that
the trapezoid formula has error constant � �

�� and the midpoint formula has error constant
�
� �

�a� Devise a linear combination of these two formulas that has order of accuracy higher
than �� What is the order of accuracy�

�b� Show that the formula of �a� is stable�

�c� In general� is a convex linear combination of two stable linear multistep formulas always
stable� 	A convex linear combination has the form a�formula�
	��a��formula� with

	 a	 ��� Prove it or give a counterexample�

������� ��
��� Order stars� Write a program to generate order star plots like that of Figure ������
This may be reasonably easy in a higher�level language like Matlab� Plot order stars for the
following linear multistep formulas� among others�

�a� �th�order Adams�Bashforth�

�b� �th�order Adams�Moulton�

�c� �th�order backwards di�erentiation�

�d� the unstable formula 	��������

� ��
��� The proof of Theorem ��� in the text covered only the case of an explicit linear
multistep formula� Show what modi�cations are necessary for the implicit case�
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��	� Convergence and the Dahlquist

equivalence theorem

Up to this point we have talked about accuracy� consistency� and stability� but we have
yet to establish that a linear multistep formula with these admirable properties will actually
work� After one more de�nition we shall be able to remedy that� To set the stage� let us
return to the footnote on p� ��� If a linear multistep formula has local accuracy O	kp	���
how can it fail to have global accuracy O	kp�� The answer has nothing to do with the fact
that f may be nonlinear� for we have assumed that f is Lipschitz continuous� and that is
enough to keep the behavior of small perturbations essentially linear� so long as they remain
small�

The &aw in the O	kp� argument is as follows� Even though a discretization error may
be small when it is �rst introduced� from that point on it may grow�often exponentially�
The global error at step n consists of the superposition not simply of the local errors at
all previous steps� but of what these local errors have become at step n� Consistency is the
condition that the local errors are small at the time that they are introduced� provided that
the function being dealt with is smooth� The additional condition of stability is needed to
make sure that they do not become bigger as the calculation proceeds�

The purpose of this section is to describe the ideas related to the Dahlquist Equivalence
Theorem that have been built to describe these phenomena� The rigorous statement of the
argument above appears in the proof of Theorem ���
� below� If f is linear� the argument
becomes simpler� see Exercise ������

To begin we must de�ne the notion of convergence� The standard de�nition requires
the linear multistep formula to be applicable not just to a particular initial�value problem�
but to an arbitrary initial�value problem with Lipschitz continuous data f � It must also
work for any starting values v�� � � � �vs�� that satisfy the consistency condition�

kvn�u�k� o	�� as k� 
� 
	n	 s��� 	������

Equivalent statements of the same condition would be

limkvn�u�k�
� limvn � u�� or vn � u�
o	��

as k� 
 for 
	n	 s�� 	see Exercise ���	b���

A linear multistep formula is convergent if� for all initial�value problems ������� satisfy�
ing the conditions of Theorem ��� on an interval �
�T �� and all starting values v�� � � � �vs��

satisfying �������� the solution vn satis�es

kv	t��u	t�k� o	�� as k� 
 	������

uniformly for all t� �
�T ��

�The choice of the norm k � k doesn�t matter
 since all norms on a �nite�dimensional space are
equivalent� For a scalar ODE the norm can be replaced by the absolute value�
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	�Uniformly� means that kv	t��u	t�k is bounded by a �xed function �	k�� o	�� as k� 
�
independent of t�� To put it in words� a convergent linear multistep formula is one that
is guaranteed to get the right answer in the limit k� 
� for each t in a bounded interval
�
�T ��assuming there are no rounding errors�

Some remarks on this de�nition are in order� First� 	������ is a statement about the
limit k� 
 for each �xed value of t� Since v	t� is de�ned only on a discrete grid� this means
that k is implicitly restricted to values t�n in this limit process� However� it is possible to
loosen this restriction by requiring only tnk � t as k� 
�

Second� to be convergent a linear multistep formula must work for all well�posed
initial�value problems� not just one� This may seem an unnaturally strict requirement� but
it is not� A formula that worked for only a restricted class of initial�value problems�for
example� those with su�ciently smooth coe�cients�would be a fragile object� sensitive to
perturbations�

Third� vn refers to the exact solution of the linear multistep formula� rounding errors
are not accounted for in the de�nition of convergence� This is a reasonable simpli�cation
because discretization errors and errors in the starting values are included� via 	������� and
the stability phenomena that govern these various sources of error are nearly the same�
Alternatively� the theory can be broadened to include rounding errors explicitly�

Finally� note that condition 	������ is quite weak� requiring only o	�� accuracy of start�
ing values� or O	k� if the errors happen to follow an integral power of k� This is in contrast
to the O	k�� accuracy required at subsequent time steps by the de�nition of consistency�
The reason for this discrepancy is simple enough� starting errors are introduced only at s
time steps� while subsequent errors are introduced "	k��� times� Therefore one can get
away with one order lower accuracy in starting values than in the time integration� For
partial di�erential equations we shall �nd that analogously� one can usually get away with
one order lower accuracy in discretizing boundary conditions�

We come now to a remarkable result that might be called the fundamental theorem
of linear multistep formulas� Like much of the material in this and the last section� it �rst
appeared in a classic paper by Germund Dahlquist in ������

DAHLQUIST EQUIVALENCE THEOREM

Theorem ����� A linear multistep formula is convergent if and only if it is consistent
and stable�

Before proving this theorem� let us pause for a moment to consider what it says� It
seems obvious that a linear multistep formula that admits unstable solutions is unlikely to
be useful� but it is not so obvious that instability is the only thing that can go wrong� For
example� clearly the extrapolation formula 	������ of Example ����� must be useless� since it
ignores ffng� but why should that have anything to do with instability� Yet Theorem ���

asserts that any useless consistent formula must be unstable� And indeed� we have veri�ed
this prediction for 	������ in Example ������

�G� Dahlquist
 
Convergence and stability in the numerical integration of ordinary di�erential equa�
tions
� Math
 Scand
 � ������
 ������ There are important earlier references in this area
 too

notably an in�uential article by Richard von Mises in ���	
 who proved convergence of Adams
methods� The classic reference in book form on this material is P� Henrici
 Discrete Variable Meth�
ods in Ordinary Di�erential Equations
 Wiley
 ����� A modern classic is the two�volume series by
Hairer
 N rsett and Wanner�
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An indication of the power of Theorem ���
 is that here� as in all of the developments of
this chapter� the initial�value problems under consideration may be linear or nonlinear� For
partial di�erential equations we shall see that the best known analog of Theorem ���
�the
Lax Equivalence Theorem�requires linearity�

Proof� Theorem ���
 is not mathematically deep� the art is in the de�nitions� To prove
it we shall establish three implications�

�a� convergent 
 stable�
�b� convergent 
 consistent�
�c� consistent 
 stable 
 convergent�

In outline� �a� and �b� are proved by applying the linear multistep formula to particular
initial�value problems 	������� and �c� is proved by verifying that so long as one has stability�
local errors cannot add up too much�

�a� Convergent 
 stable� If the linear multistep formula is convergent� then 	������
must hold in particular for the initial�value problem ut � 
� u	
� � 
� whose solution is
u	t�� 
� Now suppose the formula is unstable� Then by the proof of Theorem ��!� it admits
a particular solution V n� zn with jzj� �� or V n�nzn with jzj��� In either case� suppose
the starting values for the time integration are taken as

vn�
p
kV n� 
	n	 s��� 	������

where k is as always the time step� Then the computed solution for all n will be preciselyp
kV n� But whereas the factor

p
k ensures that the starting values approach u� � 
 as

k� 
� as required by 	������� jpkV nj approaches � for any t�nk � 
� Thus 	������ does
not hold� and the formula is not convergent�

�b� Convergent 
 consistent� To prove consistency� by Theorem ���� we must show

	��� 
 and 
�	����	��� For the �rst� consider the particular initial�value problem ut�
�
u	
� � �� whose solution is u	t�� �� and the particular initial values v� � � � � � vs�� � ��
Since f	u�t� � 
� the linear multistep formula reduces to 	������� and convergence implies
that the solutions to this recurrence relation for the given initial data satisfy v	��� � as
k� 
� Since vn does not depend on k� this is the same as saying vn� � as n�� for �xed
k � 
� and by 	������� this implies 
	��� 
�

To show 
�	�� � �	��� consider the particular initial�value problem ut � �� u	
� � 
�
with exact solution u	t�� t � Since f	u�t� � �� the linear multistep formula 	������ reduces
to 
	Z�vn� k�	��� Now since 
	Z� is a polynomial of degree s with 
	��� 
� it has a �nite
Taylor expansion


	Z� � 
�	��	Z���

�

�

��	��	Z����
 � � �
 �

s�

�s�	��	Z���s�

Let us apply 
	Z� to the particular function V n� kn�	���
�	��� tn�	���

�	��� Since V n is

linear in n� all but the �rst term in the series are 
� and we get 
	Z�V n � 
�	��	Z���V n�
which reduces to k�	��� In other words� V n is a solution to the linear multistep formula if
the prescribed initial values are vn � V n for 
	 n	 s��� Obviously this solution satis�es
condition 	������ for the given initial data u	
� � 
� For the linear multistep formula to be
convergent� it follows that V n must satisfy 	������� and thus we must have �	�� � 
�	��� as
claimed�

�c� Consistent � stable 
 convergent� �This part of the proof is not yet written� see
the references� such as pp� ��� ��� of Hairer� N'rsett� # Wanner 	���!�� Following work of



���� THE DAHLQUIST EQUIVALENCE THEOREM TREFETHEN ���� � �	

Butcher 	����� and Skeel 	��!��� it is now standard to carry out the proof by �rst reducing
the linear multistep formula to a one�step recursion� as in 	������� The underlying idea is
backward error analysis�i�e�� one shows that the numerical method for a �xed time step
computes the exact solution to a problem with a slightly perturbed function f	u�t���

Besides convergence� it is desirable to know something about the accuracy of solutions
computed with linear multistep formulas� To ensure pth�order accuracy� condition 	������
may be strengthened as follows�

kvn�u	tn�k�O	kp� as k� 
� 
	n	 s��� 	������

The following theorem con�rms that for a stable linear multistep formula applied to an
initial�value problem with su�ciently smooth coe�cients� the local errors add up as ex�
pected�

GLOBAL pTH�ORDER ACCURACY

Theorem ����� Consider an initial�value problem ������� that satis�es the conditions
of Theorem ��� on an interval �
�T �� and in addition� assume that f	u�t� is p times
continuously di�erentiable with respect to u and t� Let an approximate solution be
computed by a convergent linear multistep formula of order of accuracy � p with starting
values satisfying �����	�� Then this solution satis�es

kv	t��u	t�k�O	kp� as k� 
� 	������

uniformly for all t� �
�T ��

EXERCISES

� ������ Which of the following linear multistep formulas are convergent� Are the noncon�

vergent ones inconsistent� or unstable� or both�

�a� vn	�� �
�v

n	�
 �
�v

n
�kfn	��

�b� vn	�� vn�

�c� vn	�� vn
 �
�k	f

n	�
fn	�
fn	���

�d� vn	�� vn	�
 �
�k	!f

n	���fn	�
fn��

�e� vn	�� �
�
 	v

n	��vn	��
vn
 �
�
k	f

n	�
�fn	�
�fn	�
fn��

�f� vn	���vn	�
vn	�
vn
�k	fn	�
fn	���

� ������ Borderline cases�

�a� Consider the unstable extrapolation formula 	������� What is the order of magnitude
	power of k� of the errors introduced locally at each step� What is the order of mag�
nitude factor by which these are ampli�ed after "	k��� time steps� Verify that this
factor is large enough to cause nonconvergence�

�b� What are the corresponding numbers for the s�step generalization with 
	z�� 	z���s�
�	z�� 
�
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�c� On the other hand� devise another unstable linear multistep formula in which the local
discretization errors are of a high enough order of accuracy relative to the unstable
ampli�cation factors that they will not cause nonconvergence�

�d� Why does the example of �c� not contradict Theorem ���
� Why is it appropriate to
consider this example unstable�

� ������ Convergence for scalar linear initial�value problems� Prove as brie&y and elegantly
as you can that stability and consistency imply convergence� for the special case in which u
is scalar and the function f	u�t� is scalar and linear�
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��
� Stability regions

The results of the last two sections concerned the behavior of linear multistep formulas
in the limit k� 
� But for the important class of sti� ODEs� which involve widely varying
time scales� it is impractical to take k small enough for those results to apply� Analysis of
behavior for �nite k becomes indispensable� In Chapter � we shall see that consideration of
�nite k is also essential for the analysis of discretizations of partial di�erential equations�

Sti�ness is a subtle idea� and our discussion of it will be deferred to the next section�
Here� we shall simply consider the problem of �nite k analysis of linear multistep formulas�
The key idea that emerges is the idea of a stability region�

EXAMPLE ������ Let us begin by looking again at the unstable third�order formula
	�������� In Example ����� we applied this formula to the initial�value problem ut � u�
u	
� � � with time step k�
�
�� and observed the oscillatory instability shown in Figure
�����	b�� From one time step to the next� the solution grew by a factor about ������ and
to explain this we looked at the recurrence relation


	Z�vn � vn	�
�vn	���vn � 
� 	��!���

The zeros of 
	z� are � and ��� corresponding to solutions vn�� and vn�	���n to 	��!����
and the second of these solutions explains the factor ����� at least approximately�

For this scalar� linear example� we can do much better by retaining the terms fn	j in
the analysis� The function f is simply f	u��u� and thus an exact rather than approximate
model of the calculation is the recurrence relation


	Z�vn�k�	Z�fn � 	
	Z��k�	Z��vn � 
� 	��!���

that is�

	Z�
	���k�Z�	�
�k��vn � vn	�
	���k�vn	��	�
�k�vn � 
�

Setting k�
�
�� gives the zeros

z�� ��
������ z������������

And now we have a virtually exact explanation of the ratio ������ of Exercise ������
accurate� as it happens� to about �
 digits of accuracy 	see Exercise ��!����

For an arbitrary ODE� f is not just a multiple of u� and �nite k analysis
is not so simple as in the example just considered� We want to take the terms
�jf

n�j into consideration� but we certainly don�t want to carry out a separate
analysis for each function f � Instead� let us assume that f
u�t�� au for some
constant a� C � In other words� we consider the linear model equation

ut� au� 
������
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In the next section we shall see that a nonlinear system of ODEs can be reduced
to a set of problems of the form 
������ by linearization� freezing of coe�cients�
and diagonalization�

If a linear multistep formula 
������� is applied to the model equation

������� it reduces to the recurrence relation

sX
j�	

�jv
n�j�'k

sX
j�	

�jv
n�j � ��

or equivalently h
	
Z��'k

Z�

i
vn � �� 
������

where we have de�ned
'k� ak� 
������

Now let �!k
z� be the stability polynomial

�!k
z� � 	
z��'k

z� �
sX

j�	


�j�
'k�j�z

j � 
������

whose coe�cients depend on the parameter 'k� Then the solutions to 
������
are related to the zeros of �!k exactly as the solutions to 
������ were related
to the zeros of 	
z�� In analogy to the developments of x���� we de�ne�

A linear multistep formula is absolutely stable� for a particular value
'k � ak if all solutions fvng of the recurrence relation �	����� are bounded
as n

�

Just as in Theorem ���� it is easy to characterize those linear multistep formulas
that are absolutely stable�

ROOT CONDITION FOR ABSOLUTE STABILITY

Theorem ����� A linear multistep formula is absolutely stable for a par�
ticular value 'k� ak if and only if all the zeros of �!k
z� satisfy jzj � �� and
any zero with jzj�� is simple�

What is di
erent here from what we did in x��� is that everything depends
on 'k� For some 'k a linear multistep formula will be absolutely stable� and for
others it will be absolutely unstable� Here now is the key de�nition�

�Other terms are 
weakly stable� and 
time�stable��
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The stability region S of a linear multistep formula is the set of all 'k � C

for which the formula is absolutely stable�

Note that according to this de�nition� a linear multistep formula is stable if
and only if the point � belongs to its stability region�

Let us now derive the four most familiar examples of stability regions�
illustrated in Figure ������

EXAMPLE ������ For the Euler formula 	������� 	��!��� becomes

��k	z� � 	z����(k � z�	�
(k�� 	��!�!�

with zero �
(k� Therefore S is the set of (k � C with j�
(kj 	 �� that is� the disk j(k�	���j 	 ��
Figure ��!��a plots this region�

EXAMPLE ������ For the backward Euler formula 	������� the stability polynomial is

��k	z� � 	z����(kz � 	��(k�z��� 	��!���

with zero 	��(k���� S is the set of (k � C with j��(kj��	 �� that is� the exterior of the disk
j(k��j � �� See Figure ��!��b�

EXAMPLE ������ For the trapezoid formula 	������� we have

��k	z� � 	z���� �
�
(k	z
�� � 	�� �

�
(k�z�	�
 �

�
(k� 	��!���

with zero 	�
 �
�
(k��	�� �

�
(k�� 	�
(k��	��(k�� S is the set of points in C that are no farther

from �� than from ��i�e�� Rez	 
� the left half�plane� See Figure ��!��c�

EXAMPLE ������ The midpoint formula 	������ has

��k	z� � z���(kz��� 	��!��
�

which has two zeros z satisfying

z� �

z
��(k� 	��!����

Obviously there is always one zero with jz�j 	 � and another with jz�j � �� so for absolute
stability� we must have jz�j� jz�j� � �both zeros on the unit circle� which will occur if
and only if (k lies in the closed complex interval ��i� i �� The two extreme values (k��i give
double zeros z� � z� ��i� so we conclude that S is the open complex interval 	�i� i�� as
shown in Figure ��!��d�
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�� �


a� Euler 
b� Backward Euler

i

�i


c� Trapezoid 
d� Midpoint

Figure ������ Stability regions 
shaded� for four linear multistep
formulas� In case 
d� the stability region is the open complex interval

�i� i��

As mentioned on p� ��� the four linear multistep formulas just considered
are the bases of four important classes of �nite di
erence formulas for partial
di
erential equations� Euler� backward Euler� trapezoid� and leap frog� We
shall refer often to Figure ����� in examining the stability properties of these
�nite di
erence formulas�

The boundaries of the stability regions for various Adams�Bashforth� Ad�
ams�Moulton� and backwards di
erentiation formulas are plotted in Figures
�����%������ Note that the scales in these three �gures are very di
erent�
the Adams�Moulton stability regions are much larger than those for Adams�
Bashforth� Note also that for all of the higher�order Adams formulas� the
stability regions are bounded� whereas for the backwards di
erentiation for�
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mulas they are unbounded� As will be explained in the next section� this is
why backwards di
erentiation formulas are important�

How does one compute stability regions like these! One approach would
be to calculate the zeros of �!k for a large number of values of

'k� C and draw
a contour plot� but there is a simpler and more accurate method� By 
�������
if z is a zero of �!k
z� for some

'k and 

z� 	��� then

'k�
	
z�



z�

�������


cf� 
��������� To determine the boundary of the stability region� �rst calculate
the curve of values 'k corresponding to z� ei	 with � � ������� This root locus
curve has the property that at each point 'k on the curve� one zero of �!k just
touches the unit circle� It follows that the boundary of S is a subset of the root
locus curve�only a subset� in general� because the other zeros of �!k might lie
either in the disk or outside� By the principle of the argument of complex
analysis� one can determine which components are which by checking just one
value 'k in each loop enclosed by the root locus curve� See Exercise ������

EXERCISES

� ������ Prove that for the unstable linear multistep formula 	�������� the stability region S
is the empty set�

� ������ Find exact formulas for the boundaries of S for �a� the second�order Adams�Bashforth
formula� �b� the third�order backwards di�erentiation formula�

������� ������ Write a computer program to plot root locus curves� In a high�level language like
Matlab� it is most convenient to de�ne a variable r���z��� where z is a vector of �

 or
so points on the unit circle� and then work directly with formulas such as 	�����
�� 	��������
	������� rather than with the coe�cients �j and 	j �

�a� Reproduce Figure ��!��� and then generate the root locus curve for p��� What is S �
	Be careful��

�b� Reproduce Figure ��!��� and then generate the root locus curve for p�!� What is S �

�c� Plot the root locus curve for 	�������� Label each component by the number of zeros of
��k outside the unit disk� and explain how this pictures relates to Exercise ��!���

� ����	� What is the maximum time step k for which the third�order Adams�Bashforth
formula is absolutely stable when applied to �i� ut��u� �ii� ut� iu�

�a� First� estimate the time step limits with the aid of Figure ��!�� and a ruler�

�b� Now derive the exact answers� For �ii� this is hard� but it can be done�

� ����
� Explain the remark about �
�digit accuracy at the end of Example ��!��� Approxi�
mately where does the �gure of �
 digits come from�

� ������ True or False� the stability region for any linear multistep formula is a closed subset
of the complex plane�
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i

�i

�����

p��

�

�

Figure ������ Boundaries of stability regions for Adams�Bashforth
formulas of orders �%��

�� ��

�i

��i

p��

�

�

�

Figure ������ Boundaries of stability regions for Adams�Moulton
formulas of orders �%�� 
Orders � and � were displayed already in
Figure �����
b�c��� Note that the scale is very di
erent from that of
the previous �gure�
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p��

�

�

�
�

�

�
��


��
i

�
i

Figure ����	� Boundaries of stability regions for backwards di
er�
entiation formulas of orders �%� 
exteriors of curves shown��

� ������ Simpson�s formula� Determine the stability region for Simpson�s formula 	�����!��
and draw a sketch�

� ������ Prove that any convergent linear multistep formula is absolutely unstable for all
su�ciently small positive (k � 
�
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���� Sti�ness

In ���� Henrici�s Discrete Variable Methods in Ordinary Di�erential Equations ap�
peared� This landmark book� presenting the material of the previous sections in great
detail� made the �Dahlquist theory� of linear multistep formulas widely known� With the
availability of formulas of arbitrarily high order of accuracy and a general convergence the�
ory to prove that they worked� it may have seemed that little was left to do except turn
theory into software�

As ODE computations became commonplace in the ���
s� however� it became clear
that certain problems were handled badly by the usual methods� Unreasonably small time
steps would be required to achieve the desired accuracy� What was missing in the standard
theory was the notion of sti�ness� As it happens� the missing piece had been supplied
a decade earlier in an eight�page paper by a pair of chemists at the University of Wis�
consin� C�F� Curtiss and J�O� Hirschfelder 	Proc� Nat� Acad� Sci� ��� ������ Curtiss and
Hirschfelder had identi�ed the phenomenon of sti�ness� coined the term� and invented back�
wards di�erentiation formulas to cope with it� However� their paper received little attention
for a number of years� and for example� it does not appear among Henrici�s three hundred
references�

What is a sti� ODE� The following are the symptoms most often mentioned�

�� The problem contains widely varying time scales�

�� Stability is more of a constraint on k than accuracy�

�� Explicit methods don�t work�	

Each of these statements has been used as a characterization of sti�ness by one author or
another� In fact� they are all correct� and they are not independent statements but part of a
coherent whole� After presenting an example� we shall make them more precise and explain
the logical connections between them�

EXAMPLE ��
��� The linear initial�value problem

ut � ��

	u�cos	t���sin	t�� u	
�� � 	������

has the unique solution u	t�� cos	t�� for if u	t�� cos	t� the �rst term on the right becomes 
�
so that the large coe�cient ��

 drops out of the equation� That coe�cient has a dominant
e�ect on nearby solutions of the ODE corresponding to di�erent initial data� however� as
illustrated in Figure ������ A typical trajectory u	t� of a solution to this ODE begins by
shooting rapidly towards the curve cos	t� on a time scale � 
�
�� This is the hallmark of
sti�ness� rapidly changing components that are present in an ODE even when they are
absent from the solution being tracked�

�This last item is quoted from p� � of the book by Hairer and Wanner ������� For all kinds of
information on numerical methods for sti� ODEs
 including historical perspectives and lighthearted
humor
 that is the book to turn to� Another earlier reference worth noting is L� F� Shampine and C�
W� Gear
 
A user�s view of solving sti� ordinary di�erential equations
� SIAM Review �� ������

�����
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t

Figure ��
��� u	t�� cos	t� and nearby solutions of the initial�value problem 	�������
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Table ��
��� Computed values v	�� for the same problem�

** *** * ** * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Figure ��
��� Computed errors jv	���cos	��j as a function of step size k for the
same problem 	log�log scale��
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Table ����� indicates the curious e�ect that this property of the ODE has on numerical
computations� For six values of k� the table compares the results at t�� computed by the
second�order Adams�Bashforth and backwards di�erentiation formulas� 	Since the ODE is
linear� implementing the backwards di�erentiation formula is easy�� The di�erence between
the two columns of numbers is striking� The backwards di�erentiation formula behaves
beautifully� converging smoothly and quadratically to the correct answer� but the Adams�
Bashforth formula generates enormous and completely erroneous numbers for moderate k�
Yet when k becomes small enough it settles down to be just as accurate as backwards
di�erentiation�

This behavior is shown graphically in Figure ������ which is a log�log plot of the error
jv	��� cos	��j as a function of k� The Adams�Bashforth formula is obviously useless for
k � 
�
�� What if we only want two or three digits of accuracy� With the Adams�Bashforth
formula� that request cannot be satis�ed� seven digits is the minimum�

Since the example just considered is linear� one can analyze what went
wrong with the Adams�Bashforth formula exactly� In the notation of the last
section� the trouble is that there is a root of the recurrence relation �!k
Z�v

n��
that lies outside the unit disk� We make the argument precise as follows�

EXAMPLE ��
��� CONTINUED� If u	t� is any solution to ut���

	u�cos	t���sin	t��
then 	�u�	t��u	t��cos	t� satis�es the equation

	�u�t � ��

	�u�� 	������

This is a linear� scalar� constant�coe�cient ODE of the form 	��!��� of the last section� with
a���

� If we apply the �nd�order Adams�Bashforth formula to it� we get the recurrence
relation

vn	��vn	� � ��

k	 ��vn	�� �
�v

n��

that is�

vn	�
	��
k���vn	���
kvn � 
�

with characteristic polynomial

��k	z� � z�
	��
k���z��
k � z�
	 ��
(k���z� �

�
(k�

For k � 
�
�� one of the two roots of this polynomial lies in the negative real interval
	������� whereas for k 	 
�
� that root crosses into the interval ����
�� This is why
k�
�
� is the critical value for this problem� as is so strikingly evident in Figure ������

Figure ����� shows how this analysis relates to the stability region of the second�order
Adams�Bashforth formula� The shaded region in the �gure is the stability region 	see Figure
��!���� and the crosses mark the quantities (k���

k corresponding to the values k 	except
k�
��� in Table ������ When k becomes as small as 
�
�� i�e�� (k���� the crosses move into
the stability region and the computation is successful�
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x x x x x
!k���	 !k��� !k���
k�	�� k�	�	� k�	�	�

!k���

!k�� �
�

Figure ������ The stability region for the �nd�order Adams�Bash�
forth formula� with crosses marking the values 'k�����k from Table
��	���

With this example in mind� let us turn to a more careful discussion of
statements �%� on p� ��� The following summary describes what it means to
say that the ODE ut � f
u�t� is sti
 with respect to the solution u�
t� for
times t� t��

�� Widely varying time scales� Sti
ness arises when the time scale that
characterizes the evolution of u�
t� for t� t� is much slower than the time
scale that characterizes the evolution of small perturbations 
�u�
t� on that
solution for t� t��

�� Stability is more of a constraint than accuracy� If widely varying time
scales in this sense are present� and if the discrete ODE formula has a bounded
stability region� then there is a mismatch between the relatively large time
steps that are adequate to resolve u�
t� and the relatively small time steps
that are necessary to prevent unstable growth of small perturbations 
�u�
t��
A successful computation will necessitate the use of these small time steps�

�� Explicit methods don�t work� In particular� since explicit methods
always have bounded stability regions 
Exercise ��	���� the solution of sti

ODEs by explicit methods necessitates the use of small time steps� For better
results one must usually turn to implicit formulas with unbounded stability
regions�

If the real world supplied ODEs to be solved �at random�� then widely
varying time scales might not be a common concern� In actuality� the appli�
cations that the real world presents us with are often exceedingly sti
� One
example is the �eld of chemical kinetics� Here the ordinary di
erential equa�
tions describe reactions of various chemical species to form other species� and
the sti
ness is a consequence of the fact that di
erent reactions take place
on vastly di
erent time scales� Time scale ratios of ��� or more are common�
Two other �elds in which sti
 ODEs arise frequently are control theory� where
controlling forces tend to be turned on and o
 again suddenly� and circuit sim�
ulation� since di
erent circuit components tend to have widely di
ering natural
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frequencies�� A fourth important class of sti
 ordinary di
erential equations
are the systems of ODEs that arise after discretizing time�dependent partial
di
erential equations� particularly parabolic problems� with respect to their
space variables�the �method of lines�� This example will be discussed at
length in Chapter ��

To be able to determine whether a particular problem is sti
� we need
tools for quantifying the notion of the �time scales� present in an ODE� The
way this is generally done is by reducing an arbitrary system of ODEs to a
collection of scalar� linear model problems of the form 
������� to which the
idea of stability regions will be applicable� This is achieved by the following
sequence of three steps� a sequence that has been familiar to mathematical
scientists for a century�

ut� f
u�t� 
��	���

� LINEARIZE

ut� J
t�u 
��	���

� FREEZE COEFFICIENTS

ut�Au 
��	���

� DIAGONALIZE

fut��ug� ��(
A�� 
��	���

In 
��	���� (
A� denotes the spectrum of A� i�e�� the set of eigenvalues�
We begin with 
��	���� a system ofN �rst�order ODEs� with u�
t� denoting

the particular solution that we are interested in� If we make the substitution

u
t�� u�
t��
�u�
t��

as in 
��	���� then stability and sti
ness depend on the evolution of 
�u�
t��
The �rst step is to linearize the equation by assuming �u is small� If f is

di
erentiable with respect to each component of u� then we have

f
u�t� � f
u�� t��J
t�
�u�
t��o
k�uk��

where J
t� is the N �N Jacobian matrix of partial derivatives of f with
respect to u�

�J
t��ij �
�f �i�

�u�j�

u�
t�� t�� �� i� j�N�

�See A� Sangiovanni�Vincentelli and J� K� White
 Relaxation Techniques for the Solution of VLSI
Circuits
 Kluwer
 �����
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This means that if �u is small� the ODE can be accurately approximated by
a linear problem�

ut � f
u�� t��J
t�
�u��

If we subtract the identity u�t � f
u�� t� from this equation� we get


�u�t � J
t�
�u��

One can think of this result as approximate� if �u is small� or exact� if �u is
in�nitesimal� Rewriting �u as a new variable u gives 
��	����

The second step is to freeze coe	cients by setting

A� J
t��

for the particular value t� of interest� The idea here is that stability and
sti
ness are local phenomena� which may appear at some times t� and not
others� The result is the constant�coe�cient linear problem 
��	����

Finally� assuming A is diagonalizable� we diagonalize it� In general� any
system of N linear ordinary di
erential equations with a constant� diagonal�
izable coe�cient matrix A is exactly equivalent to N scalar equations 
������
with values a equal to the eigenvalues of A� To exhibit this equivalence� let V
be anN�N matrix such that V ��AV is diagonal� 
The columns of V are eigen�
vectors of A�� Then ut �Au can be rewritten as ut � V 
V ��AV �V ��u� i�e��

V ��u�t � 
V

��AV �
V ��u�� a diagonal system of equations in the variables
V ��u� This diagonal system of ODEs can be interpreted as a representation
of the original system 
��	��� in the basis of eigenvectors of A de�ned by the
columns of V � And thus� since a diagonal system of ODEs is the same as a
collection of independent scalar ODEs� we end up with the N problems 
��	����

Having reduced 
��	��� to a collection of N scalar� linear� constant�coef�
�cient model problems� we now estimate stability and sti
ness as follows�

RULE OF THUMB� For a successful computation of u�
t� for t� t�� k must
be small enough that for each eigenvalue � of the Jacobian matrix J
t���
'k� k� lies inside the stability region S �or at least within a distance O
k�
of S��

This Rule of Thumb is not a theorem� exceptions can be found�� But if it
is violated� some numerical mode will very likely blow up and obliterate the
correct solution� Regarding the �gure O
k�� see Exercise ��	���

�It is interesting to consider what keeps the Rule of Thumb from being a rigorous statement� The
various gaps in the argument can be associated with the three reductions ���������������� The step
��������������� may fail if the actual discretization errors or rounding errors present in the problem
are large enough that they cannot be considered in�nitesimal
 i�e�
 the behavior of 
u is nonlinear�
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A sti
 problem is one for which satisfying the conditions of the Rule of
Thumb is more of a headache than resolving the underlying solution u�
t��

Here are some examples to illustrate the reduction 
��	���

��	����

EXAMPLE ��
��� If the equation in Example ����� had been

ut � ��

sin	u�cos	t���sin	t��

then linearization would have been called for� Setting 	�u�	t��u	t��cos	t� gives

	�u�t���

sin	�u��

and if u	t�� cos	t�� then 	�u�	t� is small� and the linear model becomes 	������ again�

EXAMPLE ��
��� For the initial�value problem

ut � ��

u�	t�sin	u�cos	t���sin	t��

we end up with a model equation with a time�dependent coe�cient�

	�u�t���

cos�	t�	�u��

These are scalar examples� However� the usual reason that an ODE has
widely varying time scales is that it is a system of di
erential equations� If the
solution has N components� it is natural that some of them may evolve much
more rapidly than others� Here are three examples�

EXAMPLE ��
��� Consider the ��� linear initial�value problem�
�u���

u���



A
t

�

�
���


 



 ��



A
�
�u���

u���



A � t� �
����

�
�u���

u���



A	
��

�
��

�



A � 	����!�

Suppose we decide that an acceptable solution at t�� is any vector with jv���	���e�����j��
and jv���	���e��j� � for some � � 
� If 	����!� is solved by a pth order linear multistep
formula with time step k� the u��� and u��� components decouple completely� so the results

The step ��������������� may fail if the density of time steps is not large compared with the time
scale on which J�t� varies �D�J� Higham ������ The �nite size of the time steps also implies that if
an eigenvalue drifts outside the stability region for a short period
 the error growth it causes may
be small enough not to matter� Finally
 the step ��������������� may fail in the case where the
matrix A is far from normal� i�e�
 its eigenvectors are far from orthogonal� In this case the matrix
V is ill�conditioned and instabilities may arise even though the spectrum of A lies in the stability
region� it becomes necessary to consider the pseudospectra of A as well �D�J� Higham and L�N�T�

������ These e�ects of non�normality will be discussed in xx�������
 and turn out to be particularly
important in the numerical solution of time�dependent PDEs by spectral methods
 discussed in
Chapter ��
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in each component will be those for the corresponding model equation 	��!���� To obtain
v��� su�ciently accurately� we need k�O	���p�� But to obtain v��� su�ciently accurately�
if the formula has a stability region of �nite size like the Euler formula� we need k to be on
the order of �
��� Most likely this is a much tighter restriction�

EXAMPLE ��
��� The linear problem

�
�u���

u���



A
t

�

�
��� �

� ��



A
�
�u���

u���



A �

�
�u���

u���



A	
��

�
��

�



A 	������

is only super�cially less trivial� The eigenvalues of the matrix are approximately ����

and �
��
� if � and � are changed to ��
� and ���� they become approximately ��������

and �
�



�
� As a result this system will experience a constraint on k just like that of
Example ������ or worse�

EXAMPLE ��
��� The nonlinear ODE�
�u���

u���



A
t

�

�
� �u���u���

cos	u�����exp	u����



A

has Jacobian matrix

J � �
�
� u��� u���

sin	u���� exp	u����



A �

Near a point t with u���	t�� 
 and u���	t�
 �� the matrix is diagonal with widely di�ering
eigenvalues� and the behavior will probably be sti��

In general� a system of ODEs ut� f
u�t� is likely to be sti
 at a point u�
u�� t� t� if the eigenvalues of J
u�� t�� di
er greatly in magnitude� especially
if the large eigenvalues have negative real parts so that the corresponding
solution components tend to die away rapidly�

To solve sti
 problems e
ectively� one needs discrete ODE formulas with
large stability regions� The particular shape of the stability region required
will depend on the problem� but as a rule� the most important property one
would like is for the stability region to include a large part of the left half�
plane� 
Why the left half�plane! See Exercise ��	���� The following de�nitions
are standard�

A linear multistep formula is A�stable if the stability region contains the
entire left half�plane Re'k� �� It is A
���stable� �� 
������� if the stability
region contains the in�nite sector jarg'k��j��� It is A
���stable if it is
A
���stable for some �� ��
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Roughly speaking� an A�stable formula will perform well on almost any sti

problem 
and of course also on non�sti
 problems� at some cost in extra work
per time step�� An A
���stable formula will perform well on sti
 problems
whose component modes exhibit exponential decay 
negative real eigenvalues�
but not oscillation 
imaginary eigenvalues�� Discretizations of parabolic and
hyperbolic partial di
erential equations� respectively� will provide good exam�
ples of these two situations later in the book�

Figure ����� showed that both the backward Euler and trapezoid formulas
are A�stable� This seems encouraging� perhaps to play it safe� we can simply
use A�stable formulas all the time! But the following famous theorem shows
that that policy is too limiting�

SECOND DAHLQUIST STABILITY BARRIER

Theorem ����� The order of accuracy of an implicit A�stable linear mul�
tistep formula satis�es p� �� An explicit linear multistep formula cannot
be A�stable�

Proof� 
Dahlquist� BIT ������ �Not yet written�

For serious computations� second�order accuracy is often not good enough�
This is why backwards di
erentiation formulas are so important� For all of
the higher�order Adams formulas� the stability regions are bounded� but the
backwards di
erentiation formulas are A
���stable for p � ��� Most of the
software in use today for sti
 ordinary di
erential equations is based on these
formulas� though Runge�Kutta methods are also contenders 
see the next sec�
tion�� Because of Theorem ��	� the usable backwards di
erentiation formulas
are only those with p� �� In practice� some codes restrict attention to p� ��

Of course there are a dozen practical issues of computation for sti
 ODEs
that we have not touched upon here� For example� how does one solve the
nonlinear equations at each time step! 
The answer is invariably some form of
Newton�s method� see the references�� The state of software for sti
 problems
is highly advanced� as is also true for non�sti
 problems� A non�sti
 solver
applied to a sti
 problem will typically get the right answer� but it will take
excessively small time steps� Many such codes incorporate devices to detect
that sti
ness is present and alert the user to that fact� or in some cases� to
trigger an automatic change to a sti
 solution method�

EXERCISES

� ������ Prove that the stability region of any explicit linear multistep formula is bounded�

�For p�������� the values of � involved are approximately ���
 ���
 ���
 ���� See Figure ������
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� ������ Suppose Figure ����� had been based on the error jv	���cos	��j instead of jv	���
cos	��j� Qualitatively speaking� how would the plot have been di�erent�

� ������ What is special about the left half�plane that makes it appear in the de�nition of
A�stability� Avoid an answer full of wa)e� write two or three sentences that hit the nail on
the head�

� ����	� The Rule of Thumb of p� !
 mentions the distance O	k� from the stability region�
Explain where this �gure comes from� perhaps with the aid of an example� Why is it O	k�
rather than� say� O	k�� or O	k�����

� ����
� Here is a second�order initial�value problem�

utt	t�� cos	tut	t��
	u	t���
t� u	
�� �� ut	
�� 
�

�a� Rewrite it as a �rst�order initial�value problem of dimension ��

�b� Write down the precise formula used to obtain vn	� at each step if this initial�value
problem is solved by the second�order Adams�Bashforth formula�

�c� Write down the ��� Jacobian matrix J for the system �a��

� ������ An astronomer decides to use a non�sti� ODE solver to predict the motion of Jupiter
around the sun over a period of �
�


 years� Saturn must certainly be included in the
calculation if high accuracy is desired� and Neptune and Uranus might as well be thrown in
for good measure� Now what about Mars� Earth� Venus� and Mercury� Including these inner
planets will improve the accuracy slightly� but it will increase the cost of the computation�
Estimate as accurately as you can the ratio by which it will increase the computation time
on a serial computer� 	Hint� your favorite almanac or encyclopedia may come in handy��

� ������ A linear multistep formula is A�stable� What can you conclude about the roots of
�	z��

� ������ Van der Pol oscillator� The equation �utt � �u
	��u��ut� known as the Van der Pol
equation� represents a simple harmonic oscillator to which has been added a nonlinear term
that introduces positive damping for juj� � and negative damping for juj� �� Solutions
to this equation approach limit cycles of �nite amplitude� and if � is small� the oscillation
is characterized by periods of slow change punctuated by short intervals during which u	t�
swings rapidly from positive to negative or back again�

�a� Reduce the Van der Pol equation to a system of �rst�order ODEs� and compute the
Jacobian matrix of this system�

�b� What can you say about the sti�ness of this problem�

� ������ Given �� �� suppose you solve an initial�value problem involving the linear equation
ut��Au
f	t�� where A is a constant ��� matrix with eigenvalues �� ������ and ���� and
f	t� is a slowly�varying vector function of dimension �� You solve this equation by a linear
multistep program that is smart enough to vary the step size adaptively as it integrates� and
your goal is to compute the solution u	�� accurate to within an absolute error on the order
of �� �� How many time steps 	order of magnitude functions of � and �� will be needed
if the program uses �a� the second�order Adams�Moulton method� and �b� the third�order
Adams�Moulton method� 	Hint� be careful��

������� ������� A nonlinear sti� ODE� �To appear
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���� Runge
Kutta methods

Linear multistep formulas represent one extreme�one function evaluation per time
step�and Runge�Kutta methods represent the other� They are one
step� multistage meth�
ods� in which f	u�t� may be evaluated at any number of stages in the process of getting from
vn to vn	�� but those stages are intermediate evaluations that are never used again� As a
result� Runge�Kutta methods are often more stable than linear multistep formulas� but at
the price of more work per time step� They tend to be easier to implement than linear multi�
step formulas� since starting values are not required� but harder to analyze� These methods
were �rst developed a century ago by Runge 	������ Heun 	��

�� and Kutta 	��
���

In this book we will not discuss Runge�Kutta methods in any detail� we merely list a
few of them� below� and state two theorems without proof� This is not because they are
less important than linear multistep methods� but merely to keep the scale of the book
manageable� Fortunately� the fundamental concepts of stability� accuracy and convergence
are much the same for Runge�Kutta as for linear multistep formulas� The details are quite
di�erent� however� and quite fascinating� involving a remarkable blend of ideas of combina�
torics and graph theory� For information� see the books by Butcher and by Hairer� N'rsett�
and Wanner�

Runge�Kutta formulas tend to be �not very unique�� If we de�ne

s� numbers of stages� p� order of accuracy�

then for most values of s there are in�nitely many Runge�Kutta formulas with the maximal
order of accuracy p� Here are some of the best�known examples �which should properly be
presented in tableau form� but I haven�t gotten around to that��

�Modi�ed Euler� or �improved polygon� formula 	s� p���

a �� kf	vn� tn��

b �� kf	vn
a��� tn
k����

vn	� �� vn
b�

	������

�Improved Euler� or �Heun� formula 	s� p���

a �� kf	vn� tn��

b �� kf	vn
a� tn
k��

vn	� �� vn
 �
� 	a
b��

	������

�Heun�s third�order formula� 	s� p���

a �� kf	vn� tn��

b �� kf	vn
a��� tn
k����

c �� kf	vn
�b��� tn
�k����

vn	� �� vn
 �
� 	a
�c��

	������
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�Fourth�order Runge�Kutta formula� 	s� p����

a �� kf	vn� tn��

b �� kf	vn
a��� tn
k����

c �� kf	vn
b��� tn
k����

d �� kf	vn
c� tn
k��

vn	� �� vn
 �
� 	a
�b
�c
d��

	������

If f is independent of u� the �rst two of these formulas reduce to the midpoint and
trapezoid formulas� respectively� and the fourth�order formula reduces to Simpson�s rule�
This last formula is sometimes called �the� Runge�Kutta formula� and is very widely known�

How accurate can a Runge�Kutta formula be� Here is what was known as of ���!�

ORDER OF ACCURACY OF EXPLICIT RUNGE�KUTTA FORMULAS

Theorem ����� An explicit Runge�Kutta formula of order of accuracy p has the fol�
lowing minimum number of stages s�

Order p Minimum number of stages s

������� ������� �respectively�
� �
� !
! �
� ��
� ����! �precise minimum unknown�
�
 ����! �precise minimum unknown�

Proof� See Butcher 	���!��

Figure ����� shows the stability regions for the explicit Runge�Kutta formulas with
s � �������� Since these formulas are not unique� the reader may wonder which choice
the �gure illustrates� As it turns out� it illustrates all the choices� for they all have the
same stability regions� which are the level curves jp	z�j�� for the truncated Taylor series
approximations to ez� 	This situation changes for s� ���

The classical Runge�Kutta formulas were explicit� but in recent decades implicit Runge�
Kutta formulas have also been studied extensively� Unlike linear multistep formulas� Runge�
Kutta formulas are not subject to an A�stability barrier� The following result should be
compared with Theorems ��� and �����

IMPLICIT RUNGE�KUTTA FORMULAS

Theorem ����� An s�stage implicit Runge�Kutta formula has order of accuracy p	 �s�
For each s� there exists an A�stable implicit Runge�Kutta formula with p��s�

�already given in Exercise ������
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s��

s��

s��

s��

��� ��

��i

�i

Figure ������ Boundaries of stability regions for Runge�Kutta formulas with
s���������

Theorem ���� looks like a panacea� why not use implicit Runge�Kutta methods all
the time for sti� problems� The answer is that they lead to large systems of equations
to be solved� For an initial�value problem involving N variables� an implicit linear multi�
step formula requires the solution of a system of N equations at each step� whereas in the
Runge�Kutta case the dimension becomes sN � Since the work involved in solving a system
of equations usually depends superlinearly on its size� it follows that implicit Runge�Kutta
formulas tend to be more advantageous for small systems than for the larger ones that
arise� for example� in discretizing partial di�erential equations� On the other hand� many
special tricks have been devised for those problems� especially to take advantage of sparsity�
so no judgment can be considered �nal� The book by Hairer and Wanner contains experi�
mental comparisons of explicit and implicit multistep and Runge�Kutta codes� reaching the
conclusion that they all work well�
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����� Notes and References

This chapter has said little about the practical side of numerical solution of ordinary
di�erential equations� One topic barely mentioned is the actual implementation of implicit
methods�the solution of the associated equations at each time step by Newton�s method
and its variants� Another gap is that we have not discussed the idea of adaptive step
size and order control� which� together with the development of special methods for sti�
problems� are the most important developments in the numerical solution of ODEs during
the computer era� The software presently available for solving ODEs is so powerful and
reliable that there is little reason other than educational to write one�s own program� except
for very easy problems or specialized applications� Essentially all of this software makes use
of adaptive step size control� and some of it controls the order of the formula adaptively
too� Trustworthy codes can be found in the IMSL� NAG� and Harwell libraries� in Matlab�
and in numerous other sources� The best�known programs are perhaps those developed at
Sandia Laboratories and the Lawrence Livermore Laboratory� which can be obtained from
the Netlib facility described in the Preface�

Although this book does not discuss boundary�value problems for ODEs� the reader
should be aware that in that area too there is excellent adaptive software� which is far
more e�cient and reliable than the program a user is likely to construct by combining an
initial�value problem solver with the idea of �shooting�� Two well�known programs are
PASVA and its various derivatives� which can be found in the NAG Library� and COLSYS�
which has been published in the Transactions on Mathematical Software and is available
from Netlib� A standard textbook on the subject is U� M� Ascher� R� M� M� Mattheij and
R� D� Russell� Numerical Solution of Boundary Value Problems for Ordinary Di�erential
Equations� Prentice Hall� �����

Some applications lead to systems of di�erential equations that must be solved in con�
junction with additional non�di�erential conditions� Such systems are called di	erential�
algebraic equations �DAEs� and have been investigated by Gear� Petzold� and many
others� Software is available for these problems too� including a well�known program by
Petzold known as DASSL�

The scale of ODEs that occur in practice can be enormous� One example of engineering
interest arises in the simulation of VLSI circuits� where one encounters sparse sti� systems
containing thousands or tens of thousands of variables� In such cases it is of paramount
importance to exploit the special properties of the systems� and one special method that
has been devised goes by the name of waveform relaxation� see the footnote on p� ���
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The last chapter dealt with time dependence� and this one is motivated
by space dependence� Later chapters will combine the two�

Fourier analysis touches almost every aspect of partial di	erential equa

tions and their numerical solution� Sometimes Fourier ideas enter into the
analysis of a numerical algorithm derived from other principles�especially in
the stability analysis of �nite
di	erence formulas� Sometimes they underlie
the design of the algorithm itself�spectral methods� And sometimes the situ

ation is a mixture of both� as with iterative and multigrid methods for elliptic
equations� For one reason or another� Fourier analysis will appear in all of the
remaining chapters of this book�

The impact of Fourier analysis is also felt in many �elds besides di	er

ential equations and their numerical solution� such as quantum mechanics�
crystallography� signal processing� statistics� and information theory�

There are four varieties of Fourier transform� depending on whether the
spatial domain is unbounded or bounded� continuous or discrete


Name Space variable Transform variable

Fourier transform unbounded� continuous continuous� unbounded

Fourier series bounded� continuous discrete� unbounded

semidiscrete Fourier transform unbounded� discrete continuous� bounded
or z�transform

discrete Fourier transform bounded� discrete discrete� bounded
�DFT�

�The second and third varieties are mathematically equivalent�� This chapter
will describe the essentials of these operations� emphasizing the parallels be

tween them� In discrete methods for partial di	erential equations� one looks
for a representation that will converge to a solution of the continuous problem
as the mesh is re�ned� Our de�nitions are chosen so that the same kind of
convergence holds also for the transforms�

Rigorous Fourier analysis is a highly technical and highly developed area
of mathematics� which depends heavily on the theory of Lebesgue measure and
integration� We shall make use of L� and �� spaces� but for the most part this
chapter avoids the technicalities� In particular� a number of statements made
in this chapter hold not at every point of a domain� but �almost everywhere�
� everywhere but on a set of measure zero�
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���� The Fourier transform

If u�x� is a �Lebesgue
measurable� function of x � R � the L��norm of u
is the nonnegative or in�nite real number

kuk �
hZ �

��
ju�x�j�dx

i���
� �������

The symbol L� ��L
two�� denotes the set of all functions for which this integral
is �nite


L� � fu 
 kuk��g� �������

Similarly� L� and L� are the sets of functions having �nite L�
 and L�
norms�
de�ned by

kuk� �
Z �

��
ju�x�jdx� kuk� � sup

���x��
ju�x�j� �������

Note that since the L� norm is the norm used in most applications� because
of its many desirable properties� we have reserved the symbol k �k without a
subscript for it�

The convolution of two functions u�v is the function u�v de�ned by

�u�v��x� � �u�v��x� �
Z �

��
u�x�y�v�y�dy �

Z �

��
u�y�v�x�y�dy� �������

assuming these integrals exist� One way to think of u� v is as a weighted
moving average of values u�x� with weights de�ned by v�x�� or vice versa�

For any u�L�� the Fourier transform of u is the function �u��� de�ned
by

�u��� � �Fu���� �
Z �

��
e�i�xu�x�dx� � �R �

The quantity � is known as the wave number� the spatial analog of frequency�
For many functions u � L�� this integral converges in the usual sense for all
� � R � but there are situations where this is not true� and in these cases one
must interpret the integral as a limit in a certain L�
norm sense of integralsRM
�M as M ��� The reader interested in such details should consult the
various books listed in the references��

�If u � L�� then �u��� exists for every � and is continuous with respect to �� According to the
Riemann�Lebesgue Lemma� it also satis	es j�u���j� 
 as ����



���� THE FOURIER TRANSFORM TREFETHEN ���� � ��

x �

Figure ������ Space and wave number domains for the Fourier trans

form �compare Figures ����� and �������

The following theorem summarizes some of the fundamental properties of
Fourier transforms�

THE FOURIER TRANSFORM

Theorem ����� If u�L�� then the Fourier transform

�u��� � �Fu���� �
Z �

��
e�i�xu�x�dx� � �R �������

belongs to L� also� and u can be recovered from �u by the inverse Fourier

transform

u�x� � �F���u��x� � �

��

Z �

��
ei�x�u���d�� x�R � �������

The L��norms of u and �u are related by Parseval�s equality�

k�uk �
p
��kuk� �������

If u�L� and v �L� �or vice versa�� then u�v �L�� and du�v satis�es

du�v��� � �u����v���� �������

These four equations are of such fundamental importance that they are
worth commenting on individually� although it is assumed the reader has al

ready been exposed to Fourier analysis�

�As mentioned in the introduction to this chapter� some of these properties�namely equations
������� and �����
��hold merely for �almost every� value of x or �� In fact even if f�z� is a
continuous function in L�� its Fourier transform may fail to converge at certain points x� To ensure
pointwise convergence one needs additional assumptions such as that f is of bounded variation

�de	ned below before Theorem ���� and belongs to L�� These assumptions also ensure that at any
point x where f has a jump discontinuity� its Fourier transform converges to the average value
�f�x���f�x������
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First of all� ������� indicates that �u��� is a measure of the correlation of
u�x� with the function ei�x� The idea behind Fourier analysis is to interpret
u�x� as a superposition of monochromatic waves ei�x with various wave num

bers �� and �u��� represents the complex amplitude �more precisely
 amplitude
density with respect to �� of the component of u at wave number ��

Conversely� ������� expresses the synthesis of u�x� as a superposition of its
components ei�x� each multiplied by the appropriate factor �u���� The factor
�� is a nuisance that could have been put in various places in our formulas�
but is hard to eliminate entirely�

Equation �������� Parseval�s equality� is a statement of energy conserva

tion
 the L� energy of any signal u�x� is equal to the sum of the energies of
its component vibrations �except for the factor

p
�� �� By �energy� we mean

the square of the L� norm�
Finally� the convolution equation ������� is perhaps the most subtle of

the four� The left side� du�v���� represents the strength of the wave number �
component that results when u is convolved with v�in other words� the degree
to which u and v beat in and out of phase with each other at wave number �
when multiplied together in reverse order with a varying o	set� Such beating
is caused by a quadratic interaction of the wave number component � in u
with the same component of v�hence the right
hand side �u����v����

All of the assertions of Theorem ��� can be veri�ed in the following ex

ample� which the reader should study carefully�

EXAMPLE ������ B�splines� Suppose u is the function

u�x� 	

� �
� for ���x� �

� otherwise

�������

�Figure ������� Then by ������� we have kuk	��p�
 and ������� gives


u��� 	 �
�

Z �

��

e�i�xdx 	
e�i�x

��i�
����
�

��

	
sin�

�
� ��������

�This function 
u��� is called a sinc function� more on these in x����� From ������� and the
indispensable identity� Z �

��

sin� s

s�
ds 	 �� ��������

which can be derived by complex contour integration
 we calculate k
uk	p�
 which con�rms
��������

From the de�nition ������� it is readily veri�ed that in this example

�u�u��x� 	
� �

� ���jxj��� for ���x� �

� otherwise

��������

�worth memorizing�
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u

u�u

u�u�u


u

du�u

du�u�u

�� 
 � ��� ��


�� 
 � ��� ��


�� 
 � ��� ��


x

�x

x �

�

Figure ������ The �rst three B�splines of Example ����� and their Fourier trans�
forms�

and

�u�u�u��x� 	

���
��

�
�� �

�x
� for ���x� �


�
� ����jxj�x�� for �� jxj � �

� otherwise


��������

and by ������� and ��������
 the corresponding Fourier transforms must be

du�u��� 	 sin� �
��

� du�u�u��� 	 sin� �
��

� ��������

See Figure ������ In general
 a convolution u�p� of p copies of u has the Fourier transform

du�p� ��� 	 Ffu�u�� � ��ug��� 	
�
sin�

�

	p
� ��������

Note that whenever u�p� or any other function is convolved with the function u of

�������
 it becomes smoother
 since the convolution amounts to a local moving average� In
particular
 u itself is piecewise continuous
 u�u is continuous and has a piecewise continuous
�rst derivative
 u �u �u has a continuous derivative and a piecewise continuous second
derivative
 and so on� In general u�p� is a piecewise polynomial of degree p� � with a
continuous �p���nd derivative and a piecewise continuous �p���st derivative
 and is known
as a B�spline� �See
 for example
 C� de Boor
 A Practical Guide to Splines� Springer
 ������

Thus convolution with u makes a function smoother
 while the e�ect on the Fourier
transform is to multiply it by sin��� and thereby make it decay more rapidly ���� This
relationship is evident in Figure ������

For applications to numerical methods for partial di	erential equations�
there are two properties of the Fourier transform that are most important�



���� THE FOURIER TRANSFORM TREFETHEN ���� � ��

One is equation �������
 the Fourier transform converts convolution into mul

tiplication� The second can be derived by integration by parts


cux��� �
Z �

��
e�i�xux�x�dx � �

Z �

��
��i��e�i�xu�x�dx � i� �u���� ��������

assuming u�x� is smooth and decays at �� That is� the Fourier transform
converts di	erentiation into multiplication by i�� This result is rigorously
valid for any absolutely continuous function u� L� whose derivative belongs
to L�� Note that di	erentiation makes a function less smooth� so the fact that
it makes the Fourier transform decay less rapidly �ts the pattern mentioned
above for convolution�

�� ��

Figure ������

EXAMPLE ������ The function

u�x� 	

���
��

�
� for ���x� �


� �
� for ��x� �

� otherwise


��������

illustrated in Figure �����
 has Fourier transform


u���	 �
�

Z 	

��

e�i�xdx� �
�

Z �

	

e�i�xdx

	
�

��i� ���e�i��e��i���� 	
�

�i�
�ei��e�i��� 	

isin� �

�
�

��������

which is i� times the Fourier transform �������� of the triangular hat function ��������� In
keeping with ��������
 �������� is the derivative of ���������

The following theorem collects �������� together with a number of addi

tional properties of the Fourier transform
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PROPERTIES OF THE FOURIER TRANSFORM

Theorem ���� Let u�v � L� have Fourier transforms �u � Fu� �v � Fv�
Then�

�a� Linearity� Ffu�vg���� �u�����v���� Ffcug���� c�u����

�b� Translation� If x
 �R � then Ffu�x�x
�g���� ei�x	�u����

�c� Modulation� If �
 �R � then Ffei�	xu�x�g���� �u����
��

�d� Dilation� If c�R with c ���� then Ffu�cx�g���� �u���c��jcj�

�e� Conjugation� Ffug���� �u�����

�f� Di	erentiation� If ux�L�� then Ffuxg���� i��u����

�g� Inversion� F��fug���� �

��
�u�����

Proof� See Exercise ������

In particular� taking c��� in part �d� above gives Ffu��x�g� �u�����
Combining this result with part �e� leads to the following elementary but useful
results� De�nitions
 u�x� is even� odd� real� or imaginary if u�x� � u��x��
u�x� ��u��x�� u�x� � u�x�� or u�x� ��u�x�� respectively� u�x� is hermitian

or skew
hermitian if u�x�� u��x� or u�x���u��x�� respectively�
SYMMETRIES OF THE FOURIER TRANSFORM

Theorem ���� Let u�L� have Fourier transform �u�Fu� Then
�a� u�x� is even �odd� �	 �u��� is even �odd�


�b� u�x� is real �imaginary� �	 �u��� is hermitian �skew�hermitian�


and therefore

�c� u�x� is real and even �	 �u��� is real and even


�d� u�x� is real and odd �	 �u��� is imaginary and odd


�e� u�x� is imaginary and even �	 �u��� is imaginary and even


�f� u�x� is imaginary and odd �	 �u��� is real and odd�

Proof� See Exercise ������
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In the discussion above we have twice observed the following relationships
between the smoothness of a function and the decay of its Fourier transform


u�x� �u���

smooth 
 decays rapidly as j�j��
decays rapidly as jxj�� 
 smooth

�Of course since the Fourier transform is essentially the same as the inverse
Fourier transform� by Theorem ���g� the two rows of this summary are equiv

alent�� The intuitive explanation is that if a function is smooth� then it can
be accurately represented as a superposition of slowly
varying waves� so one
does not need much energy in the high wave number components� Conversely�
a non
smooth function requires a considerable amplitude of high wave number
components to be represented accurately� These relationships are the bedrock
of analog and digital signal processing� where all kinds of smoothing operations
are e	ected by multiplying the Fourier transform by a �windowing function�
that decays suitably rapidly�

The following theorem makes these connections between u and �u precise�
This theorem may seem forbidding at �rst� but it is worth studying carefully�
Each of the four parts of the theorem makes a stronger smoothness assumption
on u than the last� and reaches a correspondingly stronger conclusion about
the rate of decay of �u��� as j�j ��� Parts �c� and �d� are known as the
Paley�Wiener theorems�

First� a standard de�nition� A function u de�ned on R is said to have
bounded variation if there is a constant M such that for any �nite m and
any points x
�x�� � � ��xm�

Pm
j�� ju�xj��u�xj���j �M �
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SMOOTHNESS OF u AND DECAY OF �u

Theorem ���� Let u be a function in L��

�a� If u has p�� continuous derivatives in L� for some p� �� and a pth
derivative in L� that has bounded variation� then

�u��� � O�j�j�p��� as j�j��� ��������

�b� If u has in�nitely many continuous derivatives in L�� then

�u��� � O�j�j�M� as j�j�� for all M� ��������

and conversely�

�c� If u can be extended to an analytic function of z� x�iy in the complex
strip j Imzj�a for some a	 �� with ku�x� iy�k� const uniformly for each
constant �a� y�a� then

eaj�j�u����L�� ��������

and conversely�

�d� If u can be extended to an entire function� of z � x� iy with ju�z�j�
O�eajzj� as jzj �� �z � C � for some a 	 �� then �u has compact support
contained in ��a�a�� i�e�

�u���� � for all j�j	a� ��������

and conversely�

Proof� See� for example� xVI�� of Y� Katznelson� An Introduction to
Harmonic Analysis� Dover� ����� �Also see Rudin �p� ����� Paley � Wiener�
Reed � Simon v� �� Ho�rmander v� � �p� ����� entire functions books� � � �

A function of the kind described in �d� is said to be band�limited� since
only a �nite band of wave numbers are represented in it�

Since the Fourier transform and its inverse are essentially the same� by
Theorem ���g� Theorem ��� also applies if the roles of u�x� and �u��� are inter

changed�

EXAMPLE ������ CONTINUED� The square wave u of Example ����� �Figure ������
satis�es condition �a� of Theorem ��� with p	 �
 so its Fourier transform should satisfy

�An entire function is a function that is analytic throughout the complex plane C �
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j
u���j 	 O�j�j���
 as is veri�ed by ��������� On the other hand
 suppose we interchange
the roles of u and 
u and apply the theorem again� The function u��� 	 sin��� is entire

and since sin��� 	 �ei��e�i����i
 it satis�es u��� 	O�ej�j� as j�j �� �with � now taking
complex values�� By part �d� of Theorem ���
 it follows that u�x� must have compact
support contained in ������
 as indeed it does�

Repeating the example for u�u
 condition �a� now applies with p	�
 and the Fourier
transform �������� is indeed of magnitude O�j�j���
 as required� Interchanging u and 
u

we note that sin� ���� is an entire function of magnitude O�e�j�j� as j�j��
 and u�u has
support contained in �������

EXERCISES


 ������ Show that the two integrals in the de�nition ������� of u�v are equivalent�

 ������ Derive conditions �a�	�g� of Theorem ���� �Do not worry about justifying the usual
operations on integrals��


 ����
� Prove Theorem ����


 ������

�a� Which functions u�L��L� satisfy u�u	��
�b� How about u�u	u�


 ������ Integration�

�a� What does part �f� of Theorem ��� suggest should be the Fourier transform of the
function U�x�	

R x
��u�s�ds�

�b� Obviously U�x� cannot belong to L� unless
R�
��

u�x�dx	�
 so by Theorem ���
 this is

a necessary condition for 
U to be in L� also� Explain how the condition
R�
��

u�x�dx	�

relates to your formula of �a� for 
U in terms of 
u�


 ����
�

�a� Calculate the Fourier transform of u�x� 	 ���x����� �Hint� use a complex contour
integral if you know how� Otherwise
 look the result up in a table of integrals��

�b� How does this example �t into the framework of Theorem ���� Which parts of the
theorem apply to u�

�c� If the roles of u and 
u are interchanged
 how does the example now �t Theorem ����
Which parts of the theorem apply to 
u�


 ������ The autocorrelation function of a function u�L��L� may be de�ned by

��c� 	
�

kuk�
Z �

��

u�x�u�x�c�dx�

Find an expression for ��c� as an inverse Fourier transform of a product of Fourier transforms
involving u� This expression is the basis of some algorithms for computing ��c��
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 ������ Without evaluating any integrals
 use Theorem ��� and �������� to determine the
Fourier transform of the following function�

�� �� � � �


 ������ The uncertainty principle� Show by using Theorem ��� that if u�x� and 
u��� both
have compact support
 with u�L�
 then u�x�	 ��
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���� The semidiscrete Fourier transform

The semidiscrete Fourier transform is the reverse of the more familiar Fourier series�
instead of a bounded
 continuous spatial domain and an unbounded
 discrete transform
domain
 it involves the opposite� This is just what is needed for the analysis of numerical
methods for partial di�erential equations
 where we are perpetually concerned with functions
de�ned on discrete grids� For many analytical purposes it is simplest to think of these grids
as in�nite in extent�

Let h	 � be a real number
 the space step
 and let � � � �x���x	�x�� � � � be de�ned by
xj 	 jh� Thus fxjg	hZ
 where Z is the set of integers� We are concerned now with spatial
grid functions v	 fvjg
 which may or may not be approximations to a continuous function
u


vj 
u�xj��

As in the last chapter
 it will be convenient to write v�xj� sometimes for vj �

o o o o o o o o* * * * * * * * x �
h ���h ��h�

Figure ������ Space and wave number domains for the semidiscrete Fourier
transform�

For functions de�ned on discrete domains it is standard to replace the upper�case letter
L by a lower�case script letter 
� �Both symbols honor Henri Lebesgue
 the mathematician
who laid the foundations of modern functional analysis early in the twentieth century�� The

�h�norm of a grid function v is the nonnegative or in�nite real number

kvk 	


h

�X
j
��

jvj j�
����

� �������

Notice the h in front of the summation� One can think of ������� as a discrete approximation
to the integral ������� by the trapezoid rule or the rectangle rule for quadrature� �On an
unbounded domain these two are equivalent�� The symbol 
�h ��little L�two sub h�� denotes
the set of grid functions of �nite norm



�h 	 fv � kvk��g�

and similarly with 
�h and 
�h � In contrast to the situation with L�
 L�
 and L�
 these
spaces are nested�


�h� 
�h� 
�h � �������

�See Exercise �������
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The convolution v�w of two functions v�w is the function v�w de�ned by

�v�w�m 	 h

�X
j
��

vm�jwj 	 h

�X
j
��

vjwm�j � �������

provided that these sums exist� This formula is a trapezoid or rectangle rule approximation
to ��������

For any v � 
�h
 the semidiscrete Fourier transform of v is the function 
v��� de�ned
by


v��� 	 �Fhv����	h

�X
j
��

e�i�xjvj � � � ����h���h��

a discrete approximation to �������� A priori
 this sum de�nes a function 
v��� for all � �R�
However
 notice that for any integer m
 the exponential e��imxj�h	 e��imj is exactly � at
all of the grid points xj � More generally
 any wave number � is indistinguishable on the
grid from all other wave numbers ����m�h
 where m is any integer�a phenomenon called
aliasing� This means that the function 
v��� is ���h�periodic on R� To make sense of the
idea of analyzing v into component oscillations
 we shall normally restrict attention to one
period of 
v by looking only at wave numbers in the range ����h���h�
 and it is in this sense
that the Fourier transform of a grid function is de�ned on a bounded domain� But the
reader should bear in mind that the restriction of � to any particular interval is a matter
of labeling
 not mathematics� in principle e	 and e�		�ij are equally valid representations of
the grid function vj 	 ��

Thus for discretized functions v
 the transform 
v��� inhabits a bounded domain� On
the other hand the domain is still continuous� This re�ects the fact that arbitrarily �ne
gradations of wave number are distinguishable on an unbounded grid�

Since x and � belong to di�erent sets
 it is necessary to de�ne an additional vector
space for functions 
v� The L�

h�norm of a function 
v is the number

k
vk 	
hZ ��h

���h

j
v���j�d�
i���

� �������

One can think of this as an approximation to ������� in which the wave number components
with j�j	 ��h have been replaced by zero� The symbol L�

h denotes the set of �Lebesgue�
measurable� functions on ����h���h� of �nite norm


L�
h 	 f
v � k
vk��g� �������

Now we can state a theorem analogous to Theorem ����



���� THE SEMIDISCRETE FOURIER TRANSFORM TREFETHEN ���� � 
�

THE SEMIDISCRETE FOURIER TRANSFORM

Theorem ���� If v � 
�h� then the semidiscrete Fourier transform


v��� 	 �Fhv���� 	 h

�X
j
��

e�i�xjvj � � � ����h���h� �������

belongs to L�
h� and v can be recovered from 
v by the inverse semidiscrete Fourier

transform

vj 	 �F��
h 
v��x� 	

�

��

Z ��h

���h

ei�xj 
v���d�� j �Z� �������

The 
�h�norm of v and the L�
h�norm of 
v are related by Parseval�s equality�

k
vk 	
p
��kvk� �������

If u� 
�h and v � 
�h �or vice versa�� then v�w� 
�h� and dv�w satis�es

dv�w��� 	 
v��� 
w���� �������

As in the continuous case
 the following properties of the semidiscrete Fourier transform
will be useful� In �c�
 and throughout this book wherever convenient
 we take advantage of
the fact that 
v��� can be treated as a periodic function de�ned for all � �R�
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PROPERTIES OF THE SEMIDISCRETE FOURIER TRANSFORM

Theorem ���� Let v�w � 
�h have Fourier transforms 
v� 
w� Then�

�a� Linearity� Fhfv�wg���	 
v���� 
w���� Fhfcvg���	 c
v����

�b� Translation� If j	 �Z� then Fhfvj�j�g���	 ei�xj� 
v����

�c� Modulation� If �	 �R� then Fhfei��xjvjg���	 
v����	��

�d� Dilation� If m�Z with m �	�� then Fhfvmjg���	 
v���m��jmj�

�e� Conjugation� Fhfvg���	 
v�����

The symmetry properties of the Fourier transform summarized in Theorem ��� apply
to the semidiscrete Fourier transform too� we shall not repeat the list here�

We come now to a fundamental result that describes the relationship of the Fourier
transform of a continuous function u to that of a discretization v of u�or if x and � are
interchanged
 the relationship of Fourier series to Fourier transforms� Recall that because
of the phenomenon of aliasing
 all wave numbers ����j�h
 j �Z
 are indistinguishable
on the grid hZ� Suppose that u � L� is a su ciently smooth function de�ned on R
 and
let v � 
�h be the discretization obtained by sampling u�x� at the points xj � The aliasing
principle implies that 
v��� must consist of the sum of all of the values 
u�����j�h�� This
result is known as the Poisson summation formula or the aliasing formula�

ALIASING FORMULA

Theorem ��	� Let u�L� be su�ciently smooth ���� with Fourier transform 
u� and let
v � 
�h be the restriction of u to the grid hZ� Then


v��� 	

�X
j
��


u�����j�h�� � � ����h���h�� ��������

Proof� Not yet written� See P� Henrici
 Applied and Computational Complex Analysis�
v� 
� Wiley
 �����

In applications
 we are very often concerned with functions v obtained by discretization

and it will be useful to know how much the Fourier transform is a�ected in the process�
Theorems ��� and ��� combine to give the following answers to this question�
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EFFECT OF DISCRETIZATION ON THE FOURIER TRANSFORM

Theorem ��
� Let v be the restriction to the grid hZ of a function u�L�� The following
estimates hold uniformly for all � � ����h���h�� or a forteriori� for � in any �xed interval
��A�A��
�a� If u has p�� continuous derivatives in L� for some p
 � ���� and a pth derivative in
L� that has bounded variation� then

j
v���� 
u���j 	 O�hp��� as h� �� ��������

�b� If u has in�nitely many continuous derivatives in L�� then

j
v���� 
u���j 	 O�hM � as h� � for all M� ��������

�c� If u can be extended to an analytic function of z	x�iy in the complex strip jImzj�a
for some a	 �� with ku���iy�k� const uniformly for each �a�y�a� then for any �	 ��

j
v���� 
u���j 	 O�e���a����h� as h� �� ��������

�d� If u can be extended to an entire function of z	x�iy with u�z�	O�eajzj� as jzj��
�z � C � for some a	 �� then


v��� 	 
u��� provided h���a� ��������

In part �c�
 u���iy� denotes a function of x
 namely u�x�iy� with x interpreted as a variable
and y as a �xed parameter�

Proof� In each part of the theorem
 u�x� is smooth enough for Theorem ��� to apply

which gives the identity


v���� 
u��� 	
�X
j
�


u�����j�h�� 
u�����j�h�� ��������

Note that since � � ����h���h�
 the arguments of 
u in this series have magnitudes at least
��h
 ���h
 ���h� � � � �

For part �a�
 Theorem ����a� asserts that j
u���j � C�j�j�p�� for some constant C��
With �������� this implies

j
v���� 
u���j � C�

�X
j
�

�j��h��p�� 	 C�h
p��

�X
j
�

j�p���

Since p
 � this sum converges to a constant
 which implies �������� as required�
Part �b� follows from part �a��
For part �c�
 � � � ���
For part �d�
 note that if h � ��a
 then ��h 	 a� Thus �������� reduces to � for all

� � ����h���h�
 as claimed�

Note that part �d� of Theorem ��� asserts that on a grid of size h
 the semidiscrete
Fourier transform is exact for band�limited functions containing energy only at wave numbers
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j�j smaller than ��h�the Nyquist wave number
 corresponding to two grid points per
wavelength� This two�points�per�wavelength restriction is famous among engineers
 and has
practical consequences in everything from �ghter planes to compact disc players� When we
come to discretize solutions of partial di�erential equations
 two points per wavelength will
be the coarsest resolution we can hope for under normal circumstances�

EXERCISES


 ������

�a� Prove �������� 
�h� 
�h� 
�h �

�b� Give examples to show that these inclusions are proper� 
�h �� 
�h and 

�
h �� 
�h�

�c� Give examples to show that neither inclusion in �a� holds for functions on continuous
domains� L� ��L� and L� ��L��


 ������ Let ��
 � 
�h� 
�h be the discrete di�erentiation and smoothing operators de�ned by

��v�j 	
�

�h
�vj���vj���� �
v�j 	

�
� �vj���vj���� ��������

�a� Show that � and 
 are equivalent to convolutions with appropriate sequences d�m� 
�h�
�Be careful with factors of h��

�b� Compute the Fourier transforms 
d and 
m� How does 
d compare to the transform of
the exact di�erentiation operator for functions de�ned on R �Theorem ���f�� Illustrate

this comparison with a sketch of 
d��� against ��

�c� Compute kdk
 k 
dk
 kmk
 and k 
mk
 and verify Parseval!s equality�
�d� Compute the Fourier transforms of the convolution sequences corresponding to the

iterated operators �p and 
p �p
 ��� Discuss how these results relate to the rule of
thumb discussed in the last section� the smoother the function
 the more rapidly its
Fourier transform decays as j�j��� What imperfection in 
 does this analysis bring
to light�


 ����
� Continuation of Exercise ����
� Let v be the discretization on the grid hZ of the
function u�x�	 ���x�����

�a� Determine 
v���� �Hint� calculating it from the de�nition ������� is very di cult��

�b� How fast does 
v��� approach 
u��� as h� �� Give a precise answer based on �a�
 then
compare your answer with the prediction of Theorem ����

�c� What would the answer to �b� have been if the roles of u and 
u had been interchanged�
that is
 if v had been the discretization not of u�x� but of its Fourier transform�


 ������ Integration by the trapezoid rule� A function u�L��L� can be integrated approxi�
mately by the trapezoid rule�

I 	

Z �

��

u�x�dx 
 Ih	h

�X
j
��

u�xj�� ��������

This is an in�nite sum
 but in practice one might delete the tails if u decays su ciently
rapidly as jxj � �� �This idea leads to excellent quadrature algorithms even for �nite
intervals
 which are �rst transformed to the real axis by a change of variables� for a survey
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see M� Mori
 �Quadrature formulas obtained by variable transformation and the DE�rule
�
J� Comp� Appl� Math� �� � �
 ������
 ���"�����

As h� �
 how good an approximation is Ih to the exact integral I� Of course the answer
will depend on the smoothness of u�x��

�a� State how Ih is related to the semidiscrete Fourier transform�

�b� Give a bound for jIh�I j based on the theorems of this section�
�c� In particular
 what can you say about jIh�I j for the function u�x�	 e�x

�

�

�d� Show that your bound can be improved in a certain sense by a factor of ��


������ ������ Draw a plot of sinn as a function of n
 where n ranges over the integers �not the
real numbers� from � to ����� �That is
 your plot should contain ���� dots� in Matlab this
can be done in one line�� Explain why the plot looks the way it does to the human eye
 and
what this has to do with aliasing� Make your explanation precise and quantitative� �See G�
Strang
 Calculus� Wellesley�Cambridge Press
 ������
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���� Interpolation and sinc functions

�This section is not written yet
 but here!s a hint as to what will be in it��

If �j is the Kronecker delta function

�j 	

�
� if j	�


� if j �	�
 �������

then ������� gives the semidiscrete Fourier transform


�j��� 	 h �for all ���

If we now apply the inverse transform formula �������
 we �nd after a little algebra

�j 	
sin��xj�h�

�xj�h
� �������

at least for j �	�� Since xj�h is a nonzero integer for each j �	�
 the sines are zero and this
formula matches ��������

Suppose
 however
 that we evaluate ������� not just for x	xj but for all values x�R�
Then we!ve got a sinc function again
 one that can be called a grid sinc function�

Sh�x� 	
sin��x�h�

�x�h
� �������

The plot of Sh�x� is the same as the upper�right plot of Figure �����
 except scaled so that
the zeros are on the grid �i�e� at integer multiples of h�� Obviously Sh�x� is a continuous
interpolant to the discrete delta function �j � Which one� It is the unique band�limited

interpolant
 band�limited in the sense that its Fourier transform cSh��� is zero for � ��
����h���h�� �Proof� by construction it!s band�limited in that way
 and uniqueness can be
proved via an argument by contradiction
 making use of Parseval!s equality ���������

More generally
 suppose we have an arbitrary grid function vj �well
 not quite arbitrary�
we!ll need certain integrability assumptions
 but let!s forget that for now�� Then the band�
limited interpolant to vj is the unique function v�x� de�ned for x � R with v�xj� 	 vj
and 
v���	 � for � �� ����h���h�� It can be derived in two equivalent ways�

Method �� Fourier transform� Given vj 
 compute the semidiscrete Fourier transform

v���� Then invert that transform
 and evaluate the resulting formula for all x rather than
just on the grid�

Method �� linear combination of sinc functions� Write

vj 	

�X
m
��

vm�m�j �
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and then set

v�x�	
�X

m
��

vmSh�x�xm��

The equivalence of Methods � and � is trivial� it follows from the linearity and translation�
invariance of all the processes in question�

The consideration of band�limited interpolation is a good way to get insight into the
Aliasing Formula presented as Theorem ���� �In fact
 maybe that should go in this section��
The following schema summarizes everything� Study it#

u�x�
F�T��� 
u���

� DISCRETIZE l ALIASING
FORMULA

vj
F�T��� 
v���

� BAND�LIMITED
INTERPOLATION � ZERO HIGH

WAVE NOS�

v�x�
F�T��� 
v���

The Gibbs phenomenon is a particular phenomenon of band�limited interpolation
that has received much attention� After an initial discovery by Wilbraham in ����
 it was
made famous by Michelson in ���� in a letter to Nature� and then by an analysis by Gibbs
in Nature the next year� Gibbs showed that if the step function

u�x� 	

�
�� x� �


�� x	 �

is sampled on a grid and then interpolated in the band�limited manner
 then the resulting
function v�x� exhibits a ringing e�ect� it overshoots the limits �� by about �$
 achieving
a maximum amplitude Z �

��

sin��y�

�y
dy 
 ��������� �������

The ringing is scale�invariant� it does not go away as h� �� In the �nal text I will illustrate
the Gibbs phenomenon and include a quick derivation of ��������
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���� The discrete Fourier transform

Note� although the results of the last two sections will be used throughout the remain�
der of the book
 the material of the present section will not be needed until Chapters � and
��

For the discrete Fourier transform
 both x and � inhabit discrete
 bounded domains�
or if your prefer
 they are periodic functions de�ned on discrete
 unbounded domains� Thus
there is a pleasing symmetry here
 as with the Fourier transform
 that was missing in the
semidiscrete case�

o o o o o o o o o* * * * * * * * * o o o o o o o o o* * * * * * * * *x �
�h

�
�N

�

	�N
� �		� �N

�

	 N
�x

�N
�

	�� x		� xN
�

	�

Figure ������ Space and wave number domains for the discrete Fourier trans�
form�

For the fundamental spatial domain we shall take ������
 as illustrated in Figure ������
Let N be a positive even integer
 set

h 	
��

N
�N even�� �������

and de�ne xj 	 jh for any j� The grid points in the fundamental domain are

x�N�� 	 ��� � � � � x	 	 �� � � � � xN���� 	 ��h�

An invaluable identity to keep in mind is this�

N

�
	
�

h
� �������

Let 
�N denote the set of functions on fxjg that are N �periodic with respect to j
 i�e

���periodic with respect to x
 with the norm

kvk 	
h
h

N����X
j
�N��

jvj j�
i���

� �������

�Since the sum is �nite
 the norm is �nite
 so every function of the required type is guaranteed
to belong to 
�N�and to 
�N and 
�N �� The discrete Fourier transform �DFT
 of a
function v � 
�N is de�ned by


v��� 	 �FNv���� 	 h

N����X
j
�N��

e�i�xjvj � � �Z�
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Since the spatial domain is periodic
 the set of wave numbers � is discrete
 and in fact �
ranges precisely over the set of integers Z� Thus it is natural to use � as a subscript



v� 	 �FNv�� 	 h

N����X
j
�N��

e�i�jhvj � � �Z�

and since h	���N 
 
v� is N �periodic as a function of �� We shall take ��N���N��� as the
fundamental domain of wave numbers
 and let L�

N denote the set of N �periodic functions
on the grid Z
 with norm

k
vk 	
h N����X
�
�N��

j
v� j�
i���

� �������

This is nonstandard notation
 for an upper case L is normally reserved for a family of
functions de�ned on a continuum� We use it here to highlight the relationship of the discrete
Fourier transform with the semidiscrete Fourier transform�

The convolution of two functions in 
�N is de�ned by

�v�w�m 	 h

N����X
j
�N��

vm�jwj 	 h

N����X
j
�N��

vjwm�j � �������

Again
 since the sum is �nite
 there is no question of convergence�
Here is a summary of the discrete Fourier transform�
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THE DISCRETE FOURIER TRANSFORM

Theorem ���� If v � 
�N � then the discrete Fourier transform


v� 	 �FNv�� 	 h

N����X
j
�N��

e�i�jhvj � �N
�
� �� N

�
�� �������

belongs to L�
N � and v can be recovered from 
v by the inverse discrete Fourier trans�

form

vj 	 �F ��
N 
v�j 	

�

��

N����X
�
�N��

ei�jh
v� � �������

The 
�N �norm of v and the L�
N �norm of 
v are related by Parseval�s equality�

k
vk 	
p
��kvk� �������

If v�w � 
�N � then dv�w satis�es
�dv�w�� 	 
v� 
w�� �������

As with the other Fourier transforms we have considered
 the following properties of
the discrete Fourier transform will be useful� Once again we take advantage of the fact that

v��� can be treated as a periodic function de�ned for all � �Z�

PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

Theorem ����� Let v�w � 
�N have discrete Fourier transforms 
v� 
w� Then�

�a� Linearity� FNfv�wg���	 
v���� 
w���� FNfcvg���	 c
v����

�b� Translation� If j	 �Z� then FNfvj�j�g���	 ei�xj� 
v����

�c� Modulation� If �	 �Z� then FNfei��xjvjg���	 
v����	��

�e� Conjugation� FNfvg���	 
v�����

�g� Inversion� F ��
N fvg���	 �

��h

v�����

An enormously important fact about discrete Fourier transforms is that they can be
computed rapidly by the recursive algorithm known as the fast Fourier transform �FFT���
A direct implementation of ������� or ������� requires %�N�� arithmetic operations
 but the

�The fast Fourier transform was discovered by Gauss in �

� at the age of �
� but although he wrote
a paper on the subject� he did not publish it� and the idea was more or less lost until its celebrated
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FFT is based upon a recursion that reduces this �gure to %�N logN�� We shall not describe
the details of the FFT here
 but refer the reader to various books in numerical analysis
 signal
processing
 or other �elds� However
 to illustrate how simple an implementation of this idea
may be
 Figure ����� reproduces the original Fortran program that appeared in a ���� paper
by Cooley
 Lewis
 and Welch�y Assuming that N is a power of �
 it computes ��F ��

N 
 in
our notation� the vector A�� �N� represents 
v	� � � � �
vN�� on input and ��v	� � � � ���vN�� on
output�

subroutine fft�a�m�

complex a����u�w�t

n � ���m do �	 l � ��m

nv� � n
� le � ���l

nm� � n�� le� � le
�

j�� u � ��

do 
 i � ��nm� ang � ��������������
�
le�

if �i�ge�j� goto � w � cmplx�cos�ang��sin�ang��

t � a�j� do �	 j � ��le�

a�j� � a�i� do �	 i � j�n�le

a�i� � t ip � i�le�

� k � nv� t � a�ip��u

� if �k�ge�j� goto 
 a�ip� � a�i��t

j � j�k �	 a�i� � a�i��t

k � k
� �	 u � u�w

goto � return


 j � j�k end

Figure ������ Complex inverse FFT program of Cooley
 Lewis
 and Welch
�������

As mentioned above
 this program computes the inverse Fourier transform according
to our de�nitions
 times ��� The same program can be used for the forward transform by
making use of the following identity�

rediscovery by Cooley and Tukey in ����� �See M� T� Heideman� et al�� �Gauss and the history
of the fast Fourier transform�� IEEE ASSP Magazine� October ��
��� Since then� fast Fourier
transforms have changed prevailing computational practices in many areas�
yBefore publication� permission to print this program will be secured�
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v� 	 FNf&vg���� 	 ��hF ��
N f&vg���� ��������

These equalities follow from parts �e� and �g� of Theorem ����
 respectively�
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���� Vectors and multiple space dimensions

Fourier analysis generalizes with surprising ease to situations where the independent
variable x and'or the dependent variable u are vectors� We shall only sketch the essentials

which are based on the following two ideas�

� If x is a d�vector
 then the dual variable � is a d�vector too
 and the Fourier integral is
a multiple integral involving the inner product x ���

� If u is an N �vector
 then its Fourier transform 
u is an N �vector too
 and is de�ned
componentwise�

As these statements suggest
 our notation will be as follows�

d 	 number of space dimensions� x	�x�� � � � �xd�
T �

N 	 number of dependent variables� u	�u�� � � � �uN �
T �

Both � and 
u become vectors of the same dimensions


�	���� � � � � �d�
T � 
u	�
u�� � � � � 
uN�

T �

and �x becomes the dot product � �x 	 ��x�� � � �� �dxd� The formulas for the Fourier
transform and its inverse read


u��� 	 �Fu���� 	
Z
e�i��xu�x�dx

	

Z �

��

� � �
Z �

��

e�i��xu�x�dx� � � �dxd
�������

for � �Rd
 and

u�x� 	 �F��
u��x� 	 �����d
Z
ei��x
u���d�

	 �����d
Z �

��

� � �
Z �

��

ei��x
u���d�� � � �d�d
�������

for x�Rd� In other words
 u and 
u are related componentwise�


u��� 	 �
u������� � � � � 
u�N�����T � �������

If the vector L��norm is de�ned by

kuk� 	
Z
ku�x�k�dx 	

Z �

��

� � �
Z �

��

ku�x�k�dx� � � �dxd� �������
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where the symbol k �k in the integrand denotes the ��norm on vectors of length N 
 then
Parseval�s equality for vector Fourier transforms takes the form

k
uk 	 ����d��kuk� �������

The set of vector functions with bounded vector ��norms can be written simply as �L��N �
Before speaking of convolutions
 we have to go a step further and allow u�x� and 
u���

to be M �N matrices rather than just N �vectors� The de�nitions above extend to this
further case unchanged
 if the symbol k � k in the integrand of ������� now represents the
��norm �largest singular value� of a matrix� If u�x� is an M�P matrix and v�x� is a P�N
matrix
 then the convolution u�v is de�ned by

�u�v��x� 	
Z
u�x�y�v�y�dy

	

Z
u�y�v�x�y�dy

	

Z �

��

� � �
Z �

��

u�x�y�v�y�dy� � � � dyd�

�������

and it satis�es du�v��� 	 
u���
v���� �������

Since matrices do not commute in general
 it is no longer possible to exchange u and v as
in ��������

This generalization of Fourier transforms and convolutions to matrix functions is far
from idle
 for we shall need it for the Fourier analysis of multistep �nite di�erence approxi�
mations such as the leap frog formula�

Similar generalizations of our scalar results hold for semidiscrete and discrete Fourier
transforms�

EXERCISES


 ������ What is the Fourier transform of the vector function

u�x� 	
� sinx

x
�
sin�x

�x


T
�

de�ned for x�R�

 ������ What is the Fourier transform of the scalar function

u�x�	 e�
�

�
�x�

�
�x�

�
��

de�ned for x	�x��x��
T �R��
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Chapter ��

Finite Di�erence Approximations

���� Scalar model equations

���� Finite di�erence formulas

���� Spatial di�erence operators and the method of lines

���� Implicit formulas and linear algebra

���� Fourier analysis of �nite di�erence formulas

��	� Fourier analysis of vector and multistep formulas

��
� Notes and references

By a small sample we may judge of the whole piece�

� MIGUEL DE CERVANTES� Don Quixote de la Mancha� Chap� � �����	



CHAPTER � TREFETHEN ���� � ���

This chapter begins our study of time�dependent partial di�erential equa�
tions� whose solutions vary both in time� as in Chapter �� and in space� as
in Chapter �� The simplest approach to solving partial di�erential equations
numerically is to set up a regular grid in space and time and compute approx�
imate solutions on this grid by marching forwards in time� The essential point
is discretization�

Finite di�erence modeling of partial di�erential equations is one of several
�elds of science that are concerned with the analysis of regular discrete struc�
tures� Another is digital signal processing� already mentioned in Chapter ��
where continuous functions are discretized in a similar fashion but for quite
di�erent purposes� A third is crystallography� which investigates the behav�
ior of physical structures that are themselves discrete� The analogies between
these three �elds are close� and we shall occasionally point them out� The
reader who wishes to pursue them further is referred to Discrete�Time Signal
Processing� by A� V� Oppenheim and R� V� Schafer� and to An Introduction
to Solid State Physics� by C� Kittel�

This chapter will describe �ve di�erent ways to look at �nite di�erence
formulas
as discrete approximations to derivatives� as convolution �lters� as
Toeplitz matrices� as Fourier multipliers� and as derivatives of polynomial in�
terpolants� Each of these points of view has its advantages� and the reader
should become comfortable with all of them�

The �eld of partial di�erential equations is broad and varied� as is in�
evitable because of the great diversity of physical phenomena that these equa�
tions model� Much of the variety is introduced by the fact that practical
problems usually involve one or more of the following complications�

� multiple space dimensions�
� systems of equations�
� boundaries�
� variable coe�cients�
� nonlinearity�

To begin with� however� we shall concentrate on a simple class of problems�
�pure� �nite di�erence models for linear� constant�coe�cient equations on
an in�nite one�dimensional domain� The fascinating phenomena that emerge
from this study turn out to be fundamental to an understanding of the more
complicated problems too�
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���� Scalar model equations

Partial di�erential equations fall roughly into three great classes� which
can be loosely described as follows�

elliptic � time�independent�

parabolic � time�dependent and di�usive�

hyperbolic � time�dependent and wavelike� �nite speed of propagation�

In some situations� this trichotomy can be made mathematically precise� but
not always� and we shall not worry about the rigorous de�nitions� The reader
is referred to various books on partial di�erential equations� such as those by
John� Garabedian� or Courant and Hilbert� There is a particularly careful dis�
cussion of hyperbolicity in G� B� Whitham�s book Linear and Nonlinear Waves�
For linear partial di�erential equations in general� the state of the art among
pure mathematicians is set forth in the four�volume work by L� H�ormander�
The Analysis of Linear Partial Di�erential Operators�

Until Chapter �� we shall consider only time�dependent equations�
The simplest example of a hyperbolic equation is

ut � ux� �������

the one�dimensional �rst�order wave equation� which describes advection
of a quantity u�x�t� at the constant velocity ��� Given su�ciently smooth
initial data u�x���� u��x�� ������� has the solution

u�x�t� � u��x� t�� �������

as can be veri�ed by inserting ������� in �������� see Figure �����b� This solution
is unique� The propagation of energy at a �nite speed is characteristic of
hyperbolic partial di�erential equations� but this example is atypical in having
all of the energy propagate at exactly the same �nite speed�

The simplest example of a parabolic equation is

ut � uxx� �������

the one�dimensional heat equation� which describes di�usion of a quan�
tity such as heat or salinity� In this book uxx denotes the partial derivative
��u��x�� and similarly with uxxx� uxt� and so on� For an initial�value problem
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�a�

�b�

�c�

�d�

Figure ������ Evolution to t�� of �a� hat�shaped initial data under
�b� the wave equation �������� �c� the heat equation �������� and �d�
the Schr�odinger equation ������� �the real part is shown��

de�ned by ������� and su�ciently well�behaved initial data u�x���� u��x�� the
solution

u�x�t��
�

��

Z
�

��

ei�x��
�t �u����d�

�
�p
��t

Z
�

��

e��x�s�
���tu��s�ds �������

can be derived by Fourier analysis�� Physically� ������� asserts that the os�
cillatory component in the initial data of wave number � decays at the rate

e��
�t because of di�usion� which is what one would expect from �������� See

Figure �����c� Incidentally� ������� is not the only mathematically valid solu�
tion to the initial�value problem for �������� To make it unique� restrictions on
u�x�t� must be added such as a condition of boundedness as jxj ��� This
phenomenon of nonuniqueness is typical of parabolic partial di�erential equa�
tions� and results from the fact that ������� is of lower order with respect to t
than x� so that u��x� constitutes data on a �characteristic surface��

A third model equation that we shall consider from time to time is the
one�dimensional Schr	odinger equation�

ut � iuxx� �������

�In fact� it was Joseph Fourier who �rst derived the heat equation equation in 	
��� He then invented
Fourier analysis to solve it�
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which describes the propagation of the complex state function in quantum
mechanics and also arises in other �elds such as underwater acoustics� Just
as with the heat equation� the solution to the Schr�odinger equation can be
expressed by an integral�

u�x�t��
�

��

Z
�

��

ei�x�i�
�t �u����d�

�
�p
��it

Z
�

��

ei�x�s�
���tu��s�ds� �����	�

but the behavior of solutions to this equation is very di�erent� Schr�odinger�s
equation is not di�usive but dispersive� which means that rather than de�
caying as t increases� solutions tend to break up into oscillatory wave packets�
See Figure �����d�

Of course �������� �������� and ������� can all be modi�ed to incorporate
constant factors other than �� so that they become ut � aux� ut � auxx� ut �
iauxx� This a�ects the speed of advection� di�usion� or dispersion� but not the
essential mathematics� The constant can be eliminated by a rescaling of x or
t� so we omit it in the interests of simplicity �Exercise �������

The behavior of our three model equations for a hat�shaped initial function
is illustrated in Figure ������ The three waves shown there are obviously
very di�erent� In �b�� nothing has happened except advection� In �c�� strong
dissipation or di�usion is evident� sharp corners have been smoothed� The
Schr�odinger result of �d� exhibits dispersion� oscillations have appeared in
an initially non�oscillatory problem� These three mechanisms of advection�
dissipation� and dispersion are central to the behavior of partial di�erential
equations and their discrete models� and together account for most linear
phenomena� We shall focus on them in Chapter ��

Since many of the pages ahead are concerned with Fourier analysis of
�nite di�erence and spectral approximations to �������� �������� and �������� we
should say a few words here about the Fourier analysis of the partial di�erential
equations themselves� The fundamental idea is that when an equation is linear
and has constant coe�cients� it admits �plane wave� solutions of the form

u�x�t� � ei��x
�t�� � �R � � � C � �����
�

where � is again the wave number and � is the frequency� Another way to
put it is to say that if the initial data u�x��� � ei�x are supplied to an equation
of this kind� then there is a solution for t 	 � consisting of u�x��� multiplied by
an oscillatory factor ei�t� The di�erence between various equations lies in the
di�erent values of � they assign to each wave number �� and this relationship�

� � ����� �������
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is known as the dispersion relation for the equation� For �rst�order examples
it might better be called a dispersion function� but higher�order equations
typically provide multiple values of � for each �� and so the more general term
�relation� is needed� See Chapter ��

It is easy to see what the dispersion relations are for our three model
scalar equations� For example� substituting ei��x
�t� into ������� gives i�� i��
or simply �� �� Here are the three results�

ut� ux � �� �� �������

ut� uxx � �� i��� ��������

ut� iuxx � ������ ��������

Notice that for the wave and Schr�odinger equations� � � R for x � R � these
equations conserve energy in the L� norm� For the heat equation� on the
other hand� the frequencies are complex� every nonzero � � R has Im� 	 ��
which by �����
� corresponds to an exponential decay� and the L� energy is
not conserved��

The solutions ������� and �����	� can be derived by Fourier synthesis from
the dispersion relations �������� and ��������� For example� for the heat equa�
tion� �������� and �����	� imply

u�x�t� �
�

��

Z
�

��

ei�x��
�t�u����d�

�
�

��

Z
�

��

ei�x��
�t
Z
�

��

e�i�x
�

u�x��dx�d�� ��������

From here to ������� is just a matter of algebra�
Equations �������� �������� and ������� will serve as our basic model equa�

tions for investigating the fundamentals of �nite�di�erence and spectral meth�
ods� This may seem odd� since in all three cases the exact solutions are known�
so that numerical methods are hardly called for� Yet the study of numerical
methods for these equations will reveal many of the issues that come up repeat�
edly in more di�cult problems� In some instances the reduction of complicated
problems to simple models can be made quite precise� For example� a hyper�
bolic system of partial di�erential equations is de�ned to be one that can be
locally diagonalized into a collection of problems of the form �������� see Chap�
ter 	� In other instances the guidance given by the model equations is more
heuristic�

�The backwards heat equation ut��uxx has the dispersion relation ���i��� and its solutions
blow up at an unbounded rate as as t increases unless the range of wave�numbers present is limited�
The initial�value problem for this equation is ill�posed in L��



���� SCALAR MODEL EQUATIONS TREFETHEN ���� � ���

EXERCISES


 ������ Show by rescaling x and�or t that the constants a and b can be eliminated in� �a�
ut	 aux
 �b� ut	 buxx
 �c� ut	 aux�buxx�


 ������ Consider the second�order wave equation utt	uxx�

�a� What is the dispersion relation
 Plot it in the real ��� plane
 and be sure to show all
values of � for each ��

�b� Verify that the function u�x�t� 	 �
� �f�x� t��f�x� t��� �

�

R x�t

x�t
g�s�ds is the solution

corresponding to initial data u�x���	 f�x�
 ut�x���	 g�x��


 ������

�a� Verify that ������� and ������� represent solutions to ������� and ��������both di�eren�
tial equation and initial conditions�

�b� Fill in the derivation of ��������i�e�
 justify the second equals sign�


 ������ Derive a Fourier integral representation of the solution ������� to the initial�value
problem ut	ux
 u�x���	u��x��


 ������

�a� If ������� is written as a convolution u�x�t� 	 u��x� �h�t��x�
 what is h�t��x�
 �This
function is called the heat kernel��

�b� Prove that if u��x� is a continuous function with compact support
 then the resulting
solution u�x�t� to the heat equation is an entire function of x for each t� ��

�c� Outline a proof of the Weierstrass approximation theorem� if f is a continuous
function de�ned on an interval �a�b�
 then for any �� �
 there exists a polynomial p�x�
such that jf�x��p�x�j�� for x� �a�b��


������ ����	� Method of characteristics� Suppose ut 	 a�x�t�ux and u�x��� 	 u��x� for x � R
and t � �
 where a�x�t� is a smoothly varying positive function of x and t� Then u�x�t� is
constant along characteristic curves with slope ���a�x�t��

Figure �����

x

t u�x�t�

�a� Derive a representation for u����� as the solution to an ODE initial�value problem�

�b� Find u����� to �ve�digit accuracy for the problem ut 	 e���t����cos	x�ux
 u�x��� 	 x�
Plot the appropriate characteristic curve�

�c� Find u����� to �ve�digit accuracy for the same equation de�ned on the interval x �
������ with right�hand boundary condition u��� t�	 ��t� Plot the appropriate charac�
teristic curve�
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���� Finite di�erence formulas

Let h� � and k� � be a �xed space step and time step
 respectively
 and set xj 	 jh
and tn	nk for any integers j and n� The points �xj � tn� de�ne a regular grid or mesh in

two dimensions
 as shown in Figure ������formally
 the subset hZ�kZ of R�� For the rest
of this book our aim is to approximate continuous functions u�x�t� by grid functions vnj 


vnj �u�xj � tn�	 ��	�	��

The notation v�xj � tn�	 vnj will also be convenient
 and we shall sometimes write v
n or v�tn�

to represent the spatial grid function fvnj g
 j �Z
 for a �xed value n�

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � ���
h

lk

Figure ������ Regular �nite di�erence grid in x and t�

The purpose of discretization is to obtain a problem that can be solved by a �nite
procedure� The simplest kind of �nite procedure is an s�step �nite di	erence formula

which is a �xed formula that prescribes vn��

j as a function of a �nite number of other grid
values at time steps n���s through n �explicit case� or n�� �implicit case�� To compute
an approximation fvnj g to u�x�t�
 we shall begin with initial data v�� 	 	 	 �vs��
 and then

compute values vs�vs��� 	 	 	 in succession by applying the �nite di�erence formula� This
process is sometimes known as marching with respect to t�

A familiar example of a �nite di�erence model for the �rst�order wave equation �������
is the leap frog �LF� formula


LF �
�

�k
�vn��

j �vn��j � 	
�

�h
�vnj���vnj���	 ��	�	��

This equation can be obtained from ������� by replacing the partial derivatives in x and t by
centered �nite di�erences� The analogous leap frog type approximation to the heat equation
������� is

LFxx�
�

�k
�vn��

j �vn��j � 	
�

h�
�vnj����v

n
j �v

n
j���	 ��	�	��

However
 we shall see that this formula is unstable� A better approximation is the Crank�
Nicolson� �CN� formula


CN�
�

k
�vn��

j �vnj � 	
�

�

�
�

h�
�vnj����v

n
j �v

n
j����

�

h�
�vn��

j�� ��v
n��
j �vn��

j�� �

�
� ��	�	��

�Spelling note �	� the name is �Nicolson�� not �Nicholson��
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which is said to be implicit
 since it couples together the values vn��
j at the new time step

and therefore leads to a system of equations to be solved� In contrast
 leap frog formulas
are explicit� One can also de�ne a CN formula for �������
 namely

CNx�
�

k
�vn��

j �vnj � 	
�

�

�
�

�h
�vnj���vnj����

�

�h
�vn��

j�� �vn��
j�� �

�
� ��	�	��

but we shall see that since explicit formulas such as LF are stable for �������
 and easier to
implement
 an implicit formula like ������� has little to recommend it in this case� Another
famous and extremely important explicit approximation for ut	 ux is the Lax�Wendro	

formula
 discovered in �����

LW�
�

k
�vn��

j �vnj � 	
�

�h
�vnj���vnj����

k

�h�
�vnj����v

n
j �v

n
j���	 ��	�	��

The second term on the right is the �rst we have encountered whose function is not imme�
diately obvious� we shall see later that it raises the order of accuracy from � to �� We shall
see also that although the leap frog formula may be suitable for linear hyperbolic problems
such as arise in acoustics
 the nonlinear hyperbolic problems of �uid mechanics generally
require a formula like Lax�Wendro� that dissipates energy at high wave numbers�

We shall often use acronyms such as LF
 CN
 and LW to abbreviate the names of
standard �nite di�erence formulas
 as above
 and subscripts x or xx will be added sometimes
to distinguish between a model of the wave equation and a model of the heat equation� For
the formulas that are important in practice we shall usually manage to avoid the subscripts�

Of the examples above
 as already mentioned
 LF and CN are important in practice

while LFxx and CNx are not so important�

Before introducing further �nite di�erence formulas
 we need a more compact notation�
Chapter � introduced the time shift operator Z


Zvnj 	 vn��
j 	 ��	�	��

Similarly
 let K denote the space shift operator

Kvnj 	 vnj��� ��	�	��

and let I or � represent the identity operator


Ivnj 	 �v
n
j 	 vnj 	 ��	�	��

We shall make regular use of the following discrete operators acting in the space direction�

SPATIAL DIFFERENCE AND AVERAGING OPERATORS



�	
�
� �I�K�� 


�
	 �

� �K
���I� 
�	

�
� �K

���K�� ��	�	���

��	
�

h
�K�I�� �

�
	
�

h
�I�K���� ��	

�

�h
�K�K���� ��	�	���

�
�
	

�

h�
�K��I�K���	 ��	�	���
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�
 
�
 and 
� are known as forward
 backward
 and centered spatial averaging

operators
 ��
 ��
 and �� are the corresponding spatial di	erence operators of �rst
order
 and �

�
is a centered spatial di�erence operator of the second order� For discretization

in time we shall use exactly the same notation
 but with superscripts instead of subscripts��

TEMPORAL DIFFERENCE AND AVERAGING OPERATORS



�	 �
� �I�Z�� 
�	 �

� �Z
���I� 
�	 �

� �Z
���Z�� ��	�	���

��	
�

k
�Z�I�� ��	

�

k
�I�Z���� ��	

�

�k
�Z�Z���� ��	�	���

��	
�

k�
�Z��I�Z���	 ��	�	���

In this notation
 for example
 the LF and CN formulas ������� and ������� can be
rewritten

LF� ��v 	 ��v� CN� ��v 	 
��
�
v	

Note that since Z and K commute
 i�e�
 ZK 	KZ
 the order of the terms in any product
of these discrete operators can be permuted at will� For example
 we might have written
�
�

� above instead of 
��

�
�

Since all of these operators depend on h or on k
 a more complete notation would be
���h�
 ���h�
 ���h�
 etc� For example
 the symbol ����h� is de�ned by

����h�vj 	
�

�h
�K��K���vj 	

�

�h
�vj���vj���� ��	�	���

and similarly for ����h�
 etc� �Here and in subsequent formulas
 subscripts or superscripts
are omitted when they are irrelevant to the discrete process under consideration��

In general there may be many ways to write a di�erence operator� For example


�� 	
�
� �������� �

�
	 ���� 	 �

�
�� 	 ����

�
�h��

�	

As indicated above
 a �nite di�erence formula is explicit if it contains only one nonzero
term at time level n�� �e�g� LF�
 and implicit if it contains several �e�g� CN�� As in the
ODE case
 implicit formulas are typically more stable than explicit ones
 but harder to
implement� On an unbounded domain in space
 in fact
 an implicit formula would seem
to require the solution of an in�nite system of equations to get from vn to vn�� � This is
essentially true
 and in practice
 a �nite di�erence formula is usually applied on a bounded
mesh
 where a �nite system of equations must be solved� Thus our discussion of unbounded
meshes will be mainly a theoretical device�but an important one
 for many of the stability
and accuracy phenomena that need to be understood have nothing to do with boundaries�

In implementing implicit �nite di�erence formulas
 there is a wide gulf between one�
dimensional problems
 which lead to matrices whose nonzero entries are concentrated in a

�The notations ��� ��� ��� ��� ��� �� are reasonably common if not quite standard� The other
notations of this section are not standard�
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narrow band
 and multidimensional problems
 which do not� The problem of how to solve
such systems of equations e ciently is one of great importance
 to which we shall return in
x��� and in Chapters ��

We are now equipped to present a number of well�known �nite di�erence formulas for
the wave and heat equations� These are listed in Tables ����� �wave equation� and �����
�heat equation�
 and the reader should take the time to become familiar with them� The
tables make use of the abbreviations

�	
k

h
� 
	

k

h�
� ��	�	���

which will appear throughout the book� The diagram to the right of each formula in the
tables
 whose meaning should be self�evident
 is called the stencil of that formula� More
extensive lists of formulas can be found in a number of books� For the heat equation
 for
example
 see Chapter � of the book by Richtmyer and Morton�

Of the formulas mentioned in the tables
 the ones most often used in practice are
probably LF
 UW �upwind�
 and LW �Lax�Wendro	� for hyperbolic equations
 and CN
and DF �DuFort�Frankel� for parabolic equations� However
 computational problems vary
enormously
 and these judgments should not be taken too seriously�

As with linear multistep formulas for ordinary di�erential equations
 it is useful to
have a notation for an arbitrary �nite di�erence formula for a partial di�erential equation�
The following is an analog of equation ���������

An s
step linear �nite di	erence formula is a scalar formula

sX
�
�

rX
�
��

���v
n����
j�� 	 � ��	�	���

for some constants f���g with ��� 		 �� ������ 		 � for some ��� and �r��� 		 � for some
��� If ��� 	 � for all 
 		 � the formula is explicit� whereas if ��� 		 � for some 
 		 �
it is implicit� Equation �������� also describes a vector
valued 
nite di�erence formula�
in this case each vnj is an N 
vector� each ��� is an N�N matrix� and the conditions
��� 		� become det��� 		��

The analogy between �������� �linear �nite di�erence formulas� and �������� �linear
multistep formulas� is imperfect� What has become of the quantities ffng in ��������

The answer is that �������� was a general formula that applied to any ODE de�ned by a
function f�u�t�
 possibly nonlinear� the word !linear" there referred to the way f enters into
the formula
 not to the nature of f itself� In ��������
 by contrast
 we have assumed that
the terms analogous to f�u�t� in the partial di�erential equation are themselves linear and
have been incorporated into the discretization� Thus �������� is more precisely analogous to
��������

EXERCISES


������ ������ Computations for Figure ������ The goal of this problem is to calculate the curves of
Figure ����� by �nite di�erence methods� In all parts below
 your mesh should extend over
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an interval ��M�M � large enough to be e�ectively in�nite� At the boundaries it is simplest
to impose the boundary conditions u��M�t�	u�M�t�	 ��

It will probably be easiest to program all parts together in a single collection of subroutines

which accepts various input parameters to control h
 k
M 
 choice of �nite di�erence formula

and so on� Note that parts �c�
 �f�
 and �g� involve complex arithmetic�

The initial function for all parts is u��x� 	maxf����jxjg
 and the computation is carried
to t	��

Please make your output compact by combining plots and numbers on a page wherever
appropriate�

�a� Lax
Wendro� for ut 	 ux� Write a program to solve ut 	 ux by the LW formula with
k	�h��
 h	�������� 	 	 	������ Make a table of the computed values v��	����
 and the
error in these values
 for each h� Make a plot showing the superposition of the results
�i�e� v�x���� for various h
 and comment�

�b� Euler for ut 	 uxx� Extend the program to solve ut 	 uxx by the EUxx formula with
k	�h���
 h	�������� 	 	 	 ������ Make a table listing v����� for each h� Plot the results
and comment on them�

�c� Euler for ut	 iuxx� Now solve ut	 iuxx by the EUxx formula modi�ed in the obvious
way
 with k	�h���
 h	�������� can you go further
 Make a table listing v����� for
each h� Your results will be unstable� Explain why this has happened by drawing a
sketch that compares the stability region of a linear multistep formula to the set of
eigenvalues of a spatial di�erence operator� �This kind of analysis is discussed in the
next section��

�d� Tridiagonal system of equations� To compute the answer more e ciently for the heat
equation
 and to get any answer at all for Schr#odinger$s equation
 it is necessary to use
an implicit formula
 which involves the solution of a tridiagonal system of equations at
each time step� Write a subroutine TRDIAG�n�c�d�e�b�x� to solve the linear system
of equations Ax 	 b
 where A is the n�n tridiagonal matrix de�ned by ai���i 	 ci

aii 	 di
 ai�i�� 	 ei� The method to use is Gaussian elimination without pivoting of
rows or columns�� if you are in doubt about how to do this
 you can �nd details in
many books on numerical linear algebra or numerical solution of partial di�erential
equations� Test TRDIAG carefully
 and report the solution of the system�B�

� � � �
� � � �
� � � �
� � � �

�CA
�B�
x�
x�
x	
x�

�CA	
�B�
�
��
��
��

�CA 	

�e� Crank
Nicolson for ut	uxx� Write down carefully the tridiagonal matrix equation that
is involved when ut 	 uxx is solved by the formula CN� Apply TRDIAG to carry out
this computation with k 	 �

�h
 h	 �������� 	 	 	 ������ Make a table listing v����� for
each h� Plot the results and comment on them�

�f� Crank
Nicolson for ut 	 iuxx� Now write down the natural modi�cation of CN for
solving ut	 iuxx� Making use of TRDIAG again
 solve this equation with k	 �

�h
 h	

�The avoidance of pivoting is justi�able provided that the matrix A is diagonally dominant� as it
will be in the examples we consider� Otherwise Gaussian elimination may be unstable� see Golub
� Van Loan� Matrix Computations� �nd ed�� Johns Hopkins� 	�
��
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�������� 	 	 	 ������ Make tables listing v����� and v����� for each h� Plot the results�
both Rev�x��� and jv�x���j
 superimposed on a single graph�and comment on them�
How far away does the boundary at x	M have to be to yield reasonable answers


�g� Arti
cial dissipation� In part �f� you may have observed spurious wiggles contaminating
the solution� These can be blamed in part on unwanted re�ections at the numerical
boundaries at x	
M 
 and we shall have more to say about them in Chapters � and ��
To suppress these wiggles
 try adding a arti�cial dissipation term to the right�hand
side of the �nite di�erence formula
 such as

a

h

��

�
vnj � huxx�xj � tn� ��	�	���

for some a� �� What choices of M and a best reproduce Figure �����d
 Does it help
to apply the arti�cial dissipation only near the boundaries x	
M



������ ������ Model equations with nonlinear terms� Our model equations develop some inter�
esting solutions if nonlinear terms are added� Continuing the above exercise
 modify your
programs to compute solutions to the following partial di�erential equations
 all de�ned in
the interval x� ������ and with boundary conditions u�
��	 �� Devise whatever strategies
you can think of to handle the nonlinearities successfully� such problems are discussed more
systematically in �

��

�a� Burgers� equation� ut	�
�
�u

��x��uxx� �� �� Consider a Lax�Wendro� type of formula
with
 say
 �	�	�
 and initial data the same as in Figure ������ How does the numerical
solution behave as t increases
 How do you think the exact mathematical solution
should behave


�b� Nonlinear heat equation� ut 	 uxx�eu� u�x��� 	 �� For this problem you will need a
variant of the Crank�Nicolson formula or perhaps the backward Euler formula� With
the aid of a simple adaptive time�stepping strategy
 generate a persuasive sequence of
plots illustrating the !blow�up" of the solution that occurs� Make a plot of ku��� t�k

�
�

the maximum value of u�as a function of t� What is your best estimate
 based on
comparing results with several grid resolutions
 of the time at which ku��� t�k

�
becomes

in�nite


�c� Nonlinear heat equation� ut	 uxx�u�� u�x���	 ��cos��x�� Repeat part �b� for this
new nonlinearity� Again
 with the aid of a simple adaptive time�stepping strategy

generate a persuasive sequence of plots illustrating the blow�up of the solution
 and
make a plot of ku��� t�k

�
as a function of t� What is your best estimate of the time at

which ku��� t�k
�
becomes in�nite


�d� Nonlinear Schr�odinger equation� ut 	 iuxx��juj�u� �� �� Take the initial data from
Figure ����� again� How does the solution behave as a function of t
 and how does the
behavior depend on �
 Again
 try to generate a good set of plots
 and estimate the
critical value of t if there is one�

�Spelling note ��� the name is �Burgers�� so one may write �Burgers� equation� but never �Burger�s
equation��
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�EUx 
 Euler�
��v
 ��v vn��j 
 vnj �

�
�
��vnj���v

n
j���

�BEx 
 Backward Euler�
��v
 ��v vn��j 
 vnj �

�
�
��vn��j�� �v

n��
j�� �

�CNx 
 Crank�Nicolson�
��v
����v vn��j 
 vnj �

�
�
��vnj���v

n
j����

�
�
��vn��j�� �v

n��
j�� �

LF 
 Leap frog
��v
 ��v vn��j 
 vn��j ���vnj���v

n
j���

BOXx 
 Box
���

�v
����v �����vn��j ������vn��j�� 
�����vnj ������vnj��

LF� 
 Fourth�order Leap frog
��v
 �

�
���h�v�

�
�
����h�v vn��j 
 vn��j � �

�
��vnj���v

n
j����

�
�
��vnj���v

n
j���

LXF 
 Lax�Friedrichs
�
k
�Z����v
 ��v vn��j 
 �

�
�vnj���vnj����

�
�
��vnj���v

n
j���

UW 
 Upwind
��v
 ��v vn��j 
 vnj ���vnj���v

n
j �

LW 
 Lax�Wendro� ���	��
��v
 ��v�

�
�
k�
�
v vn��j 
 vnj �

�
�
��vnj���v

n
j����

�
�
���vnj����vnj �vnj���

Table ��
��� Finite di�erence approximations for the �rst�order
wave equation ut � ux� with � � k�h� For the equation ut � aux�
replace � by �a in each formula� Names in parenthesis mark formu�
las that are not normally useful in practice� Orders of accuracy and
stability restrictions are listed in Table ������
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EUxx 
 Euler
��v
 �

�
v vn��j 
 vnj ���vnj����vnj �vnj���

BExx 
 Backward Euler �Laasonen� �����
��v
 �

�
v vn��j 
 vnj ���vn��j�� ��vn��j �vn��j�� �

CN 
 Crank�Nicolson ������
��v
���

�
v vn��j 
 vnj �

�
�
��vnj����vnj �vnj����

�
�
��vn��j�� ��vn��j �vn��j�� �

�LFxx 
 Leap frog�
��v
 �

�
v vn��j 
 vn��j ����vnj����vnj �vnj���

BOXxx 
 Box
�	
�
I� �

�
����

�v
���
�
v

CN� 
 Fourth�order Crank�Nicolson
��v
����

�
�
�
�h�� �

�
�
�
��h��v

DF 
 DuFort�Frankel ������
��v
h���K�����K���v vn��j 
 vn��j ����vnj����vn��j �vn��j ��vnj���

SA 
 Saul�ev ������

Table ��
�
� Finite di�erence approximations for the heat equation
ut � uxx� with � � k�h�� For the equation ut � auxx� replace � by
�a in each formula� Names in parenthesis mark formulas that are
not normally useful in practice� Orders of accuracy and stability
restrictions are listed in Table ������
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���� Spatial di�erence operators and the

method of lines

In designing a �nite di�erence method for a time�dependent partial dif�
ferential equation� it is often useful to divide the process into two steps� �rst�
discretize the problem with respect to space� thereby generating a system of
ordinary di�erential equations in t� next� solve this system by some discrete
method in time� Not all �nite di�erence methods can be analyzed this way�
but many can� and it is a point of view that becomes increasingly important
as one considers more di�cult problems�

EXAMPLE ������ For example
 suppose ut 	 ux is discretized in space by the approxi�
mation ��� ���x� Then the PDE becomes

vt 	 ��v� ��	�	��

where v represents an in�nite sequence fvj�t�g of functions of t� This is an in�nite system
of ordinary di�erential equations
 each one of the form

�vj
�t

	
�

�h
�vj���vj���	 ��	�	��

On a bounded domain the system would become �nite
 though possibly quite large�

A system of ordinary di�erential equations of this kind is known as a
semidiscrete approximation to a partial di�erential equation� The idea of
constructing a semidiscrete approximation and then solving it by a numerical
method for ordinary di�erential equations is known as the method of lines�
The explanation of the name is that one can think of fvj�t�g as an approxima�
tion to u�x�t� de�ned on an array of parallel lines in the x�t plane� as suggested
in Figure ������

x

v
���t�

v��t� v��t�

Figure ������ The �method of lines�
semidiscretization of a time�
dependent PDE�



���� THE METHOD OF LINES TREFETHEN ���� � ���

EXAMPLE ������ CONTINUED� Several of the formulas of the last section can be in�
terpreted as time�discretizations of ������� by linear multistep formulas� The Euler and
Backward Euler discretizations ������� and ������� give the Euler and Backward Euler for�
mulas listed in Table ������ The trapezoid rule ������� gives the Crank�Nicolson formula of
�������
 and the midpoint rule ������� gives the leap frog formula of �������� On the other
hand the upwind formula comes from the Euler discretization
 like the Euler formula
 but
with the spatial di�erence operator �� instead of ��� The Lax�Wendro� and Lax�Friedrichs
formulas do not �t the semidiscretization framework�

The examples just considered were �rst� and second�order accurate ap�
proximations with respect to t �the de�nition of order of accuracy will come
in x����� Higher�order time discretizations for partial di�erential equations
have also become popular in recent years� although one would rarely go so
far as the sixth� or eighth�order formulas that appear in many adaptive ODE
codes� The advantage of higher�order methods is� of course� accuracy� One
disadvantage is complexity� both of analysis and of implementation� and an�
other is computer storage� For an ODE involving a few dozen variables� there
is no great di�culty if three or four time levels of data must be stored� but
for a large�scale PDE
for example� a system of �ve equations de�ned on a
����������� mesh in three dimensions
the storage requirements become
quite large�

The idea of semidiscretization focuses attention on spatial di�erence op�
erators as approximations of spatial di�erential operators� It happens that
just as in Chapter �� many of the approximations of practical interest can be
derived by a process of interpolation� Given data on a discrete mesh� the idea
is as follows�

��� Interpolate the data	

�
� Di�erentiate the interpolant at the mesh points�
�������

In step �
� one di�erentiates once for a �rst�order di�erence operator� twice
for a second�order di�erence operator� and so on� The spatial discretizations
of many �nite di�erence and spectral methods �t the scheme �������� the vari�
ations among them lie in in the nature of the grid� the choice of interpolating
functions� and the order of di�erentiation�

EXAMPLE ������

First order of accuracy�� For example
 suppose data vj 
 vj�� are interpolated by a
polynomial q�x� of degree �� Then ��vj 	 qx�xj�� See Figure �����a�

�Unfortunately� the word �order� customarily refers both to the order of a di�erential or di�erence
operator� and to the order of accuracy of the latter as an approximation to the former� The reader
is advised to be careful�
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*

*

*
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vj

vj��

xj��xj

vj
vj��

vj��

xj��xj�� xj

q�x�

q�x�

�a� 

 �b� 
�

Figure ����
� Derivation of spatial di�erence operators via polyno�
mial interpolation�

Second order of accuracy� Let data vj��
 vj 
 vj�� be interpolated by a polynomial q�x�
of degree �� Then ��vj 	 qx�xj� and ��vj 	 qxx�xj�� See Figure �����b�

Fourth order of accuracy� Let vj��
 vj��
 vj 
 vj��
 vj�� be interpolated by a polynomial

q�x� of degree �� Then qx�xj�	
�
	���h�vj�

�
	����h�vj 
 the fourth�order approximation listed

in Table ������

To proceed systematically� let x��x	� � � � �xnmax
be a set of arbitrary distinct

points of R � not necessarily uniformly spaced� Suppose we wish to derive the
coe�cients cmnj of all of the spatial di�erence operators centered at x� � of
orders ��m�mmax based on any initial subset x��x	� � � � �xn of these points�
That is� we want to derive all of the approximations

dmf

dxm
��� �

nX
j��

cmnjf�xj� ��m�mmax� mmax�n�nmax �������

in a systematic fashion� The following surprisingly simple algorithm for this
purpose was published by Bengt Fornberg in �Generation of �nite di�erence
formulas on arbitrarily spaced grids�� Math� Comp� �� ������� 	���
�	�
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FINITE DIFFERENCE APPROXIMATIONS ON AN ARBITRARY GRID

Theorem ���� Given mmax� � and nmax�mmax� the following algorithm
computes coe�cients of 
nite di�erence approximations in arbitrary distinct
points x�� � � � �xnmax

to �m��xm ���m�mmax� at x��� as described above�

c��� �� �� � �� �

for n �� � to nmax

� �� �

for j �� � to n��

� �� ��xn�xj�

if n�mmax then cnn�	�j �� �

for m �� � to min�n�mmax�

cmnj �� �xnc
m
n�	�j�mcm�	n�	�j���xn�xj�

for m �� � to min�n�mmax�

cmn�n �� ��mcm�	n�	�n�	�xn�	c
m
n�	�n�	���

� �� �

�The unde�ned quantities c�	n�	�j appearing for m�� may be taken to be ���

Proof� �Not yet written�

From this single algorithm one can derive coe�cients for centered� one�sided�
and much more general approximations to all kinds of derivatives� A number
are listed in Tables ����������� at the end of this section� see also Exercise
������

If the grid is regular� then simple formulas can be derived for these �nite
di�erence approximations� In particular� let D�p denote the discrete �rst�
order spatial di�erence operator obtained by interpolating vj�p� � � � �vj
p by a

polynomial q�x� of degree �p and then di�erentiating q once at xj � and letD
�m�
�p

be the analogous higher�order di�erence operator obtained by di�erentiating
m times� Then we have� for example�

D�� 
��h�� D
���
� � 


�
�h�� �������

and

D� �� �
�
��h�� 	

�
���h�� D
���
� �� �

�
��h�� 	
�
���h�� �����	�
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and

D� �� �
�
��h�� �

�
���h��
	
	�
���h�� �����
�

D
���
� �� �

�
��h�� �
�
���h��

	
	�
���h�� �������

The corresponding coe�cients appear explicitly in Table ������
The following theorem gives the coe�cients for �rst� and second�order

formulas of arbitrary order of accuracy�

CENTERED FINITE DIFFERENCE APPROXIMATIONS ON A REGULAR GRID

Theorem ��
� For each integer p� �� there exist unique 
rst�order and

second�order di�erence operators D�p and D
���
�p of order of accuracy �p that

utilize the points vj�p� � � � �vj
p� namely�

D�p ��
pX

j�	

�j 
��jh�� D
���
�p ��

pX
j�	

�j 
��jh�� �������

where

�j �� �����j
	
�

p

p�j

�	�
p�j

p

�
��

�����j
	�p���

�p�j�� �p�j��
� ��������

Proof� �Not yet written�

As p��� ������� and �������� have the following formal limits�

D
�

�� �
��h���
���h���
���h��		 	 � ��������

D���
�

�� �

�
�h���


�
��h���


�
��h��		 	 � ��������

These series look both in�nite and nonconvergent
unimplementable and pos�
sibly even meaningless� However� that is far from the case� In fact they are
precisely the �rst�order and second�order spectral di�erentiation opera�

tors for data de�ned on the in�nite grid hZ� The corresponding interpolation
processes involve trigonometric or sinc functions rather than polynomials�

��� Interpolate the data by sinc functions as in x
��	
�
� Di�erentiate the interpolant at the mesh points�

��������

As was described in x���� such a procedure can be implemented by a semidis�
crete Fourier transform� and it is well de�ned for all data v � ��h� The uses of
these operators will be the subject of Chapter 
�
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One useful way to interpret spatial di�erencing operators such as D�p is
in terms of convolutions� From �������� it is easy to verify that the �rst�order
operators mentioned above can be expressed as

D�v ��
�

h�
� 	 	 	 � � � 	

� � � 	
� � � � 	 	 	 �
v� ��������

D�v ��
�

h�
� 	 	 	 � � � 	

	�
�
� � � �

�
	
	� � � 	 	 	 �
v� ��������

���

D
�
v ��

�

h�
� 	 	 	 � 	

�
	
� � 	

� � � �� 	
� � 	

�
	
� 	 	 	 �
v ������	�

�recall Exercise ������� In each of these formulas the sequence in parentheses
indicates a grid function w� fwjg� with the zero in the middle representing
w�� Since w has compact support� except in the case D

�
� there is no problem

of convergence associated with the convolution�
Any convolution can also be thought of as multiplication by a Toeplitz

matrix
that is� a matrix with constant entries along each diagonal �aij �
ai�j�� For example� if v is interpreted as an in�nite column vector �� � � �v

�	�v��

v	� � � � � ��
T � then 
�v becomes the left�multiplication of v by the in�nite matrix

of the form


� ��
�

h

�BBBBBBBBB�

� 	
�

�	
� � 	

�

�	
� � 	

�

�	
� � 	

�

�	
� �

�CCCCCCCCCA
� ������
�

All together� there are at least �ve distinct ways to interpret the construc�
tion of spatial di�erence operators on a regular grid
all equivalent� but each
having its own advantages�

�� Approximation of di�erential operators� To the classical numerical
analyst� a spatial di�erence operator is a �nite di�erence approximation to a
di�erential operator�


� Interpolation� To the data �tter� a spatial di�erence operator is an ex�
act di�erential operator applied to an interpolatory approximant� as described
above� This point of view is basic to spectral methods� which are based on
global rather than local interpolants�

�� Convolution� To the signal processor� a di�erence operator is a convo�
lution �lter whose coe�cients happen to be chosen so that it has the e�ect of
di�erentiation�

�� Toeplitz matrix multiplication� To the linear algebraist� it is mul�
tiplication by a Toeplitz matrix� This point of view becomes central when
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problems of implementation of implicit formulas come up� where the matrix
de�nes a system of equations that must be solved�

�� Fourier multiplier� Finally� to the Fourier analyst� a spatial di�er�
ence operator is the multiplication of the semidiscrete Fourier transform by a
trigonometric function of �
which happens to approximate the polynomial
corresponding to a di�erential operator�


 
 


Going back to the method of lines idea of the beginning of this section� if
we view a �nite di�erence model of a partial di�erential equation as a system
of ordinary di�erential equations which is solved numerically� what can we say
about the stability of this system This viewpoint amounts to taking h 	 �
�xed but letting k vary� From the results of Chapter �� we would expect
meaningful answers in the limit k� � so long as the discrete ODE formula is
stable� On the other hand if k is �xed as well as h� the question of absolute
stability comes up� as in x��
� Provided that the in�nite size of the system of
ODEs can safely be ignored� we expect time�stability whenever the eigenvalues
of the spatial di�erence operator lie in the stability region of the ODE method�
In subsequent sections we shall determine these eigenvalues by Fourier analysis�
and show that their location often leads to restrictions on k as a function of h�

EXERCISES


 ������ Nonuniform grids� Consider an exponentially graded mesh on ����� with xj 	hsj 

s� �� Apply ������� to derive a ��point centered approximation on this grid to the �rst�order
di�erentiation operator �x�


������ ������ Fornberg�s algorithm� Write a brief program �either numerical or
 better
 symbolic�
to implement Fornberg$s algorithm of Theorem ���� Run the program in such a way as to
reproduce the coe cients of backwards di�erentiation formulas in Table ����� and equiva�
lently Table ������ What are the coe cients for !one�sided half�way point" approximation
of zeroth
 �rst
 and second derivatives in the points ����
 ���
 ���
 ���



 ������ Lax
Wendro� formula� Derive the Lax�Wendro� formula ������� via interpolation of
vnj��
 v

n
j and vnj�� by a polynomial q�x� followed by evaluation of q�x� at an appropriate

point�
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Table ������ Coe�cients for centered �nite di�erence approxima�
tions �from Fornberg��
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Table ����
� Coe�cients for centered �nite di�erence approxima�
tions at a �half�way� point �from Fornberg��
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Table ������ Coe�cients for one�sided �nite di�erence approxima�
tions �from Fornberg��
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���� Implicit formulas and linear algebra


This section is not yet written� but here is a sketch��

Implicit �nite di�erence formula lead to systems of equations to solve� If
the PDE is linear this becomes a linear algebra problem Ax� b� while if it is
nonlinear an iteration will possibly be required that involves a linear algebra
problem at each step� Thus it is hard to overstate the importance of linear
algebra in the numerical solution of partial di�erential equations�

For a �nite di�erence grid involving N points in each of d space dimen�
sions� A will have dimension !�Nd� and thus !�N�d� entries� Most of these are
zero� the matrix is sparse� If there is just one space dimension� A will have a
narrow band�width and Ax� b can be solved in !�N� operations by Gaussian
elimination or related algorithms� Just a few remarks about solutions of this
kind� � � � First� if A is symmetric and positive de�nite� one normally preserves
this form by using the Cholesky decomposition� Second� unless the matrix
is positive de�nite or diagonally dominant� pivoting of the rows is usually
essential to ensure stability�

When there are two or more space dimensions the band�width is larger
and the number of operations goes up� so algorithms other than Gaussian
elimination become important� Here are some typical operation counts �orders
of magnitude� for the canonical problem of solving the standard �ve�point
Laplacian �nite�di�erence operator on a rectangular domain� For the iterative
methods� � denotes the accuracy of the solution� typically log� � !�logN��
and we have assumed this in the last line of the table�

Algorithm �D �D �D

Gaussian elimination N� N� N�

banded Gaussian elimination N N� N�

Jacobi or Gauss�Seidel iteration N� log� N� log � N� log�

SOR iteration N� log� N� log � N� log�

conjugate gradient iteration N� log� N� log � N� log�

preconditioned CG iteration N log� N��� log� N�� log�

nested dissection N N� N�� log�

fast Poisson solver N logN N� logN N� logN

multigrid iteration N log� N� log � N� log�

�full� multigrid iteration N N� N�
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These algorithms vary greatly in how well they can be generalized to vari�
able coe�cients� di�erent PDEs� and irregular grids� Fast Poisson solvers are
the most narrowly applicable and multigrid methods� despite their remarkable
speed� the most general� Quite a bit of programming e�ort may be involved
in multigrid calculations� however�

Two observations may be made about the state of linear algebra in scien�
ti�c computing nowadays� First� multigrid methods are extremely important
and becoming ever more so� Second� preconditioned conjugate gradient �CG�
methods are also extremely important� as well as other preconditioned itera�
tions such as GMRES� BCG� and QMR for nonsymmetric matrices� These are
often very easy to implement� once one �nds a good preconditioner� and can
be spectacularly fast� See Chapter ��



���� FOURIER ANALYSIS OF FINITE DIFFERENCE FORMULAS TREFETHEN ���� � ���

���� Fourier analysis of

	nite di�erence formulas

In x��� we noted that a spatial di�erence operator D can be interpreted as
a convolution� Dv� a
v for some a with compact support� By Theorem ����
it follows that if v � ��h� then dDv���� da
v���� �a����v���� This fact is the basis
of Fourier analysis of �nite di�erence methods� In this section we shall work
out the details for scalar one�step �nite di�erence formulas �s�� in ����������
treating �rst explicit formulas and then implicit ones� The next section will
extend these developments to vector and multistep formulas��

To begin in the simplest setting� consider an explicit� scalar� one�step
�nite di�erence formula

vn
	j �� Svnj ��
rX

���	

��v
n
j
�� �������

where f��g are �xed constants� The symbol S denotes the operator that

maps vn to vn
	� In this case of an explicit formula� S is de�ned for arbitrary
sequences v� and by ������� we have

Sv �� a
v� a� ��
�

h
��
���� �������

To be able to apply Fourier analysis� however� let us assume v � ��h� which
implies Sv � ��h also since S is a �nite sum� Then Theorem ��� gives

cSv��� �� da
v��� �� �a����v���� �������

EXAMPLE ��
��� Upwind formula for ut 	 ux� The upwind formula �Table ������ is
de�ned by

vn��
j �	 Svnj �	 vnj ���v

n
j���vnj �� ��	�	��

where �	 k�h� By ������� or �������
 this is equivalent to Sv	 a�v with

aj �	


���������

�

h
� if j	��


�

h
����� if j	�


� otherwise�

�A good reference on the material of this section is the classic monograph by R� D� Richtmyer and
K� W� Morton� Di�erence Methods for Initial�Value Problems� 	���� Chapters � and ��
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By �������
 the Fourier transform is

%a��� �	 h�e�i�x��a
���e

�i�x
�a�� �	 �ei�h������	

The interpretation of �a��� is simple� it is the ampli�cation factor by
which the component in v of wave number � is ampli�ed when the �nite dif�
ference operator S is applied� Often we shall denote this ampli�cation factor
simply by g���� a notation that will prove especially convenient for later gen�
eralizations�

To determine g��� for a particular �nite di�erence formula� one can always
apply the de�nition above� �nd the sequence a� then compute its Fourier
transform� This process is unnecessarily complicated� however� because of a
factor h that is divided out and then multiplied in again� and also a pair
of factors �� in the exponent and the subscripts that cancel� Instead� as a
practical matter� it is simpler �and easier to remember� to insert the trial
solution vnj � gnei�jh in the �nite di�erence formula and see what expression
for g� g��� results�

EXAMPLE ��
��� CONTINUED� To derive the ampli�cation factor for the upwind
formula more quickly
 insert vnj 	 gnei�jh in ������� to get

gn��ei�jh �	 gn
�
ei�jh���ei��j���h�ei�jh�

�
�

or after factoring out gnei�jh

g��� �	 ����ei�h���	 ��	�	��

EXAMPLE ��
��� Lax
Wendro� formula for ut	ux� The Lax�Wendro� formula �Table
������ is de�ned by

vn��
j �	 Svnj �	 vnj �

�
���v

n
j���vnj����

�
��

��vnj����v
n
j �v

n
j���	 ��	�	��

Inserting vnj 	 gnei�jh and dividing by the common factor gnei�jh gives

g��� �	 �� �
���e

i�h�e�i�h�� �
��

��ei�h���e�i�h�	

The two expressions in parentheses come up so often in Fourier analysis of �nite di�erence
formulas that it is worth recording what they are equivalent to�

ei�h�e�i�h �	 �isin�h� ��	�	��

ei�h���e�i�h	�cos�h�� �	 ��sin�
�h

�
	 ��	�	��

The ampli�cation factor function for the Lax�Wendro� formula is therefore

g��� �	 �� i�sin�h���� sin�
�h

�
	 ��	�	��
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EXAMPLE ��
��� Euler formula for ut	uxx� As an example involving the heat equation

consider the Euler formula of Table �����


vn��
j �	 Svnj �	 vnj �
�v

n
j����v

n
j �v

n
j���� ��	�	���

where 
	 k�h�� By �������
 insertion of vnj 	 gnei�jh gives

g��� �	 ���
 sin�
�h

�
	 ��	�	���

Now let us return to generalities� Since g���� �a��� is bounded as a func�

tion of �� ������� implies the bound kcSvk� k�a�vk�k�ak
�
k�vk �by ��������� hence

kSvk�k�ak
�
kvk �by ��������� where k�ak

�
denotes the �sup�norm�

k�ak
�

�� max
����
�h�
�h�

j�a���j� ��������

Thus S is a bounded linear operator from ��h to ��h� Moreover� since �v���
could be chosen to be a function arbitrarily narrowly peaked near a wave
number �� with j�a����j� k�ak

�
� this inequality cannot be improved� Therefore

kSk �� k�ak
�
� ��������

The symbol kSk denotes the operator ��h�
�norm of S� that is� the norm on
the operator S � ��h� ��h induced by the usual norm ������� on ��h �see Appendix
B��

kSk �� sup
v�	�

h

kSvk
kvk � ��������

Repeated applications of the �nite di�erence formula are de�ned by vn�

Snv�� and if v� � ��h� then cvn��� � ��a����ncv����� Since �a��� is just a scalar
function of �� we have

k��a����nk
�

�� max
�

�j�a���jn� �� �max
�
j�a���j�n �� �k�ak

�
�n�

and therefore by the same argument as above�

kvnk� �k�ak
�
�nkv�k

and
kSnk �� �k�ak

�
�n� ��������

A comparison of �������� and �������� reveals that if S is the �nite dif�
ference operator for an explicit scalar one�step �nite di�erence formula� then
kSnk� kSkn� In general� however� bounded linear operators satisfy only the
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inequality kSnk � kSkn� and this will be the best we can do when we turn
to multistep �nite di�erence formulas or to systems of equations in the next
section�

The results above can be summarized in the following theorem�

FOURIER ANALYSIS OF

EXPLICIT SCALAR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� The scalar 
nite di�erence formula ������� de
nes a bound�
ed linear operator S � ��h� ��h� with

kSnk �� k�ank
�

�� �k�ak
�
�n for n� �� ������	�

If v� � ��h and vn�Snv�� then

cvn��� �� ��a����ncv����� ������
�

vnj ��
�

��

Z 
�h

�
�h
ei�xj ��a����ncv����d�� ��������

and
kvnk� �k�ak

�
�nkv�k� ��������

Proof� The discussion above together with Theorem ����

Now let us generalize this discussion by considering an arbitrary one�step
scalar �nite di�erence formula� which may be explicit or implicit� This is the
special case of �������� with s��� de�ned as follows�

A one�step linear �nite di�erence formula is a formula

rX
���	

��v
n
	
j
� ��

rX
���	

��v
n
j
� ��������

for some constants f��g and f��g with �� �� �� If �� � � for � �� � the
formula is explicit� while if �� ��� for some � ��� it is implicit�

Equation ������� is the special case of �������� with �� � �� �� � � for � �� ��

Again we wish to use �������� to de�ne an operator S � vn �� vn
	� but now
we have to be more careful� Given any sequence vn� �������� amounts to an
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in�nite system of linear equations for the unknown sequence vn
	� In the
terms of the last section� we must solve

Bvn
	 �� Avn ��������

for vn
	� where A and B are in�nite Toeplitz matrices� But before the operator
S will be well�de�ned� we must make precise what it means to do this�

The �rst observation is easy� Given any sequence vn� the right�hand side
of �������� is unambiguously de�ned since only �nitely many numbers �� are

nonzero� Likewise� given any sequence vn
	� the left�hand side is unambigu�
ously de�ned� Thus for any pair vn� vn
	� there is no ambiguity about whether
or not they satisfy ��������� it is just a matter of whether the two sides are
equal for all j� We can write �������� equivalently as

b
vn
	 �� a
vn ��������

for sequences a� �
�

h
�
��� b� �

�

h
�
��� there is no ambiguity about what it

means for a pair vn� vn
	 to satisfy ���������
The di�culty comes when we ask� given a sequence vn� does there exist

a unique sequence vn
	 satisfying �������� In general the answer is no� as is
shown by the following example�

EXAMPLE ��
��� Crank
Nicolson for ut	uxx� The Crank�Nicolson formula ������� is

vn��
j �vnj �	

�
�
�v

n
j����v

n
j �v

n
j����

�
�
�v

n��
j�� ��v

n��
j �vn��

j�� �� ��	�	���

where 
	 k�h�� Suppose vn is identically zero� Then the formula reduces to

vn��
j�� �����

�



�vn��

j �vn��
j�� �	 �	 ��	�	���

One solution of this equation is vn��
j 	� for all j
 and this is the !right" solution as far as

applications are concerned� But �������� is a second�order recurrence relation with respect
to j
 and therefore it has two linearly independent nonzero solutions too
 namely vn��

j 	�j 

where � is either root of the characteristic equation

�������
�



���� �	 �	 ��	�	���

Thus solutions to implicit �nite di�erence formulas on an in�nite grid may
be nonunique� In general� if the nonzero coe�cients at level n�� extend over
a range of J�� grid points� there will be a J�dimensional space of possible
solutions at each step� In a practical computation� the grid will be truncated
by boundaries� and the nonuniqueness will usually disappear� However� from
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a conceptual point of view there is a more basic observation to be made� which
has relevance even to �nite grids� the �nite di�erence formula has a unique
solution in the space ��h�

To make this precise we need the following assumption� which is satis�ed
for the �nite di�erence formulas used in practice� Let �b��� denote� as usual�
the Fourier transform of the sequence b�

Solvability Assumption for implicit scalar one�step 
nite di�erence for�
mulas�

�b��� ��� for � � "���h���h#� ������	�

Since �b��� is ���h�periodic� this is equivalent to the assumption that �b��� ���
for all � �R � It is also equivalent to the statement that no root � of the char�
acteristic equation analogous to �������� lies on the unit circle in the complex
plane�

Now suppose vn and vn
	 are two sequences in ��h that satisfy ���������
Then Theorem ��� implies

�b��� dvn
	��� �� �a���cvn���� ������
�

or by the solvability assumption�

dvn
	��� �� g���cvn���� ��������

where

g��� ��
�a���
�b���

� ��������

Since g��� is a continuous function on the compact set "���h���h#� it has
a �nite maximum

kgk
�

�� max
����
�h�
�h�

������a����b���

�������� ��������

Now a function in ��h is uniquely determined by its Fourier transform� There�
fore �������� implies that for any vn � ��h� there is at most one solution vn
	 � ��h
to ��������� On the other hand obviously such a solution exists� since ��������
tells how to construct it�

We have proved that if �b satis�es the solvability assumption ������	�� then
for any vn � ��h� there exists a unique vn
	 � ��h satisfying ��������� In other
words� �������� de�nes a bounded linear operator S � vn �� vn
	�

This and related conclusions are summarized in the following generaliza�
tion of Theorem ����



���� FOURIER ANALYSIS OF FINITE DIFFERENCE FORMULAS TREFETHEN ���� � ���

FOURIER ANALYSIS OF

IMPLICIT SCALAR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� If the solvability assumption �����
�� holds� then the im�
plicit 
nite di�erence formula �����
�� de
nes a bounded linear operator
S � ��h� ��h� with

kSnk �� kgnk
�

�� �kgk
�
�n for n� �� ��������

where g���� �a�����b���� If v� � ��h and vn�Snv�� then

cvn��� �� �g����ncv����� ��������

vnj ��
�

��

Z 
�h

�
�h
ei�xj �g����n�v���d�� ��������

and
kvnk� �kgk

�
�nkv�k� ��������

In principle� the operator S might be implemented by computing a semi�
discrete Fourier transform� multiplying by �a�����b���� and computing the in�
verse transform� In practice� an implicit formula will be applied on a �nite
grid and its implementation will usually be based on solving a �nite linear
system of equations� But as will be seen in later sections� sometimes the best
methods for solving this system are again based on Fourier analysis�

EXAMPLE ��
��� CONTINUED� As with explicit formulas
 the easiest way to calculate
ampli�cation factors of implicit formulas is by insertion of the trial solution vnj 	 gnei�jh�
For the implicit Crank�Nicolson model of ��������
 by �������
 this leads to

g��� �	 ���
 sin�
�h

�
��
g���sin�

�h

�
�

that is


g��� 	
%a���

%b���
	
���
 sin� �h

�

���
 sin� �h
�

� ��	�	���

where again 
	 k�h�� Since the denominator %b��� is positive for all �
 the Crank�Nicolson
formula satis�es the solvability assumption ��������
 regardless of the value of 
�

EXERCISES


 ������ Ampli
cation factors� Calculate the ampli�cation factors for the �a� Euler
 �b� Crank�
Nicolson
 �c� Box
 and �d� Lax�Friedrichs models of ut	ux� For the implicit formulas
 verify
that the solvability assumption is satis�ed�
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��
� Fourier analysis of

vector and multistep formulas

It is not hard to extend the developments of the last section to vector or multistep
�nite di�erence formulas� Both extensions are essentially the same
 for we shall reduce
a multistep scalar formula to a one�step vector formula
 in analogy to the reduction of
higher�order ordinary di�erential equations in x��� and of linear multistep formulas in x����

It is easiest to begin with an example and then describe the general situation�

EXAMPLE ������ Leap frog for ut	ux� The leap frog formula ������� is

vn��
j �	 vn��j ���vnj���vnj���	 ��	�	��

Let wn	 fwn
j g be the vector�valued grid function de�ned by

wn
j �	

�
vnj

vn��j

�
	 ��	�	��

Then the leap frog formula can be rewritten as�
vn��
j

vnj

�
	

�
�� �

� �

��
vnj��

vn��j��

�
�

�
� �

� �

��
vnj

vn��j

�
�

�
� �

� �

��
vnj��

vn��j��

�
�

that is


wn��
j �	 �

��w
n
j�����w

n
j ���w

n
j���

where

�
�� �	

�
�� �

� �

�
� �� �	

�
� �

� �

�
� �� �	

�
� �

� �

�
	 ��	�	��

Equivalently


wn�� �	 a�wn�

where a is the in�nite sequence of ��� matrices with a�	h���
�� �x����� For w

n � ���h�
N

�the set of N �vector sequences with each component sequence in ��h�
 we then have

dwn����� �	 %a���cwn���	

As described in x���
 all of these transforms are de�ned componentwise� From ������� we
get

%a��� �	

�
�i�sin�h �

� �

�
	 ��	�	��
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This is the ampli�cation matrix %a��� or G��� for leap frog
 and values at later time steps
are given by cwn �	 �%a����ncw�	

In general� an arbitrary explicit or implicit� scalar or vector multistep
formula �������� can be reduced to the one�step form ��������� where each vj
is an N �vector and each �� or �� is an N�N matrix� for a suitable value N �
The same formula can also be written in the form ��������� if B and A are
in�nite Toeplitz matrices whose elements are N�N matrices �i�e�� A and B
are tensors�� or in the form ��������� if a and b are sequences of N�N matrices�
The condition ������	� becomes

Solvability Assumption for implicit vector one�step 
nite di�erence for�
mulas�

det �b��� ��� for � � "���h���h#� ���	���

The ampli�cation matrix for the �nite di�erence formula is

G��� �� "�b���#�	"�a���#� ���	�	�

and as before� the �nite di�erence formula de�nes a bounded linear operator
on sequences of N �vectors in ���h�

N �
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FOURIER ANALYSIS OF

IMPLICIT VECTOR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� If the solvability assumption ������� holds� the implicit
vector 
nite di�erence formula �����
�� de
nes a bounded linear operator
S � ���h�

N � ���h�
N � with

kSnk �� kGnk
�
� �kGk

�
�n for n� �� ���	�	�

where G���� "�b���#�	�a���� If v� � ���h�
N and vn�Snv�� then

cvn��� �� �G����ncv����� ���	�
�

vnj ��
�

��

Z 
�h

�
�h
ei�xj �G����n�v���d�� ���	���

and
kvnk� �kGk

�
�nkv�k� ���	���

In ���	�	� and ���	���� kGk
�

is the natural extension of ������� to the matrix�
valued case� it denotes the maximum

kGk
�

�� max
����
�h�
�h�

kG���k�

where the norm on the right is the matrix ��norm �largest singular value� of
an N�N matrix� The formula kSnk� kSkn is no longer valid in general for
vector �nite di�erence formulas�

EXERCISES


 ��	��� Ampli
cation matrices� Calculate the ampli�cation matrices for the �a� DuFort�
Frankel and �b� fourth�order leap frog formulas of x���� Be sure to describe precisely what
one�step vector �nite di�erence formula your ampli�cation matrix is based upon�
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Chapter ��

Accuracy� Stability� and Convergence

���� An example

���� The Lax Equivalence Theorem

���� The CFL condition

���� The von Neumann condition

���� Resolvents� pseudospectra� and the Kreiss Matrix Theorem

���� The von Neumann condition for vector or multistep formulas

��	� Stability of the method of lines

��
� Notes and references

Mighty oaks from little acorns grow�
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CHAPTER � TREFETHEN ���� � ���

The problem of stability is pervasive in the numerical solution of par�
tial di�erential equations� In the absence of computational experience� one
would hardly be likely to guess that instability was an issue at all�
 yet it is a
dominant consideration in almost every computation� Its impact is visible in
the nature of algorithms all across this subject�most basically� in the central
importance of linear algebra� since stability so often necessitates the use of im�
plicit or semi�implicit formulas whose implementation involves large systems
of discrete equations�

The relationship between stability and convergence was hinted at by
Courant� Friedrichs� and Lewy in the �����s� identi�ed more clearly by von
Neumann in the �����s� and brought into organized form by Lax and Richtmyer
in the �����s�the Lax Equivalence Theorem� After presenting an example�
we shall begin with the latter� and then relate it to the CFL and von Neu�
mann conditions� After that we discuss the important problem of determining
stability of the method of lines� For problems that lead to normal matrices� it
is enough to make sure that the spectra of the spatial discretization operators
lie within a distance O�k� of the stability region of the time�stepping formula�
but if the matrices are not normal� one has to consider pseudospectra instead�

The essential issues of this chapter are the same as those that came up
for ordinary di�erential equations in Sections ������	� For partial di�erential
equations� however� the details are more complicated� and more interesting�

In addition to Richtmyer and Morton� a good reference on the material of
this chapter is V� Thom�ee� �Stability theory for partial di�erence operators��
SIAM Review �� ������� ��������

�In particular� L� F� Richardson� the originator of �nite�di�erence methods for partial di�erential
equations� did not discover instability� see his book Weather Prediction by Numerical Processes�

Cambridge University Press� �	

 ��
� reprinted by Dover in �	���
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���� An example

Consider the model partial di�erential equation

ut� ux� x�R � t� � �������

together with initial data

u�x��� �

�����
cos
x jxj � �


 �

� jxj � �

 �

�������

Let us solve this initial�value problem numerically by the leap frog formula
�������� with space and time steps

h������� k��h�

where � is a constant known as the mesh ratio� Thus the leap frog formula
takes the form

vn��
j � vn��

j ���vnj���vnj���� �������

with the bump in the initial function represented by �� grid points� The
starting values at t � � and k will both be taken from the exact solution
u�x�t�� u�x� t����

Figure ����� shows computed results with �� ��� and �� ���� and they
are dramatically di�erent� For �� � the leap frog formula is stable� generat�
ing a left�propagating wave as expected� For �� � it is unstable� The errors
introduced at each step are not much bigger than before� but they grow ex�
ponentially in subsequent time steps until the wave solution is obliterated by
a sawtooth oscillation with � points per wavelength� This rapid blow�up of a
sawtooth mode is typical of unstable �nite di�erence formulas�

Although rounding errors can excite an instability� more often it is dis�
cretization errors that do so� and this particular experiment is quite typical in
this respect� Figure ����� would have looked the same even if the computation
had been carried out in exact arithmetic�

This chapter is devoted to understanding instability phenomena in a gen�
eral way� Let us brie�y mention how each of the sections to follow relates to
the particular example of Figure ������

First� x��� presents the celebrated Lax Equivalence Theorem� a consistent
�nite di�erence formula is convergent if and only if it is stable� Our example
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Figure ������ Stable and unstable leap frog approximations to ut� ux�
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�a� largest value �i�sin�h �b� corresponding ampli�cation factors z

Figure ������ Right�hand sides and corresponding ampli�cation fac�
tors z of �������� The circles correspond to Figure �����a and the
crosses to Figure �����b�

is consistent for any �� but stable only for �� �� Thus as Figure ����� suggests�
the numerical results would converge to the correct solution as h�k� � in case
�a�� but not in case �b��

Next� x��� presents the CFL condition� a �nite di�erence formula can be
stable only if its numerical domain of dependence is at least as large as the
mathematical domain of dependence� In the space�time grid of Figure ������b��
information travels under the leap frog model at speed at most �������� which
is less than the propagation speed � for the PDE itself� Thus something had
to go wrong in that computation�

Section ��� presents the von Neumann approach to stability� Fourier anal�
ysis and ampli�cation factors� This is the workhorse of stability analysis� and
the foundations were given already in xx�������� For our leap frog model ��������
inserting the trial solution

vnj � znei�xj � � �R �������

leads to the equation
z � z�����ei�h�e�i�h�� �������

that is�
z�z����i� sin �h� �������

This is a quadratic equation in z with two complex roots �in general�� As �
varies� the right�hand side ranges over the complex interval ���i���i��� For
j�j � � this interval is a subset of ���i��i�� and so the roots z lie in symmetric
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positions on the unit circle jzj�� �Figure ������� For j�j� �� on the other hand�
some values of � lead to right�hand side values not contained in ���i��i�� and
the roots z then move o� the unit circle�one inside and one outside� The root
z outside the circle amounts to an �ampli�cation factor� greater than �� and
causes instability� The largest z occurs for sin �h���� which explains why
the instability of Figure ������b� had � points per wavelength�

Finally� xx������� discuss stability analysis via stability regions for prob�
lems in the form of the method of lines� Our leap frog example can be in�
terpreted as the midpoint rule in time coupled with the centered di�erence
operator 	� in space� Figure ������a� shows the stability region in the a�plane
�not the �k� ka plane� for the midpoint rule� repeated from Figure ��	��� it is
the complex open interval ��i
k� i
k� on the imaginary axis� Figure ������b�

shows the eigenvalues
 of 	��its eigenfunctions are the functions vj � ei�xj �
� �R � with corresponding eigenvalues

�

�h
�ei�h�e�i�h� �

i

h
sin �h� �����	�

Thus the eigenvalues cover the complex interval ��i
h� i
h�� For absolute sta�
bility of the system of ODEs that arise in the method of lines� these eigenvalues
must lie in the stability region� leading once again to the condition h�� �k���
that is� k �h� Section ��� shows that this condition relates to true stability as
well as to absolute stability�

�We are being careless with the term �eigenvalue�� Since the functions vj � ei�xj do not belong
to ��h� they are not true eigenfunctions� and the proper term for the quantities ������
 is �spectral
values�� However� this technicality is of little importance for our purposes� and goes away when
one considers problems on a bounded interval or switches to the ��h norm� so we shall ignore it and
speak of �eigenvalues� anyway�
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�a� Stability region for midpoint rule �b� Eigenvalues of 	�

Figure ������ Absolute stability analysis of Example ������

EXERCISES

� ������ Determine the unstable mode that dominates the behavior of Figure ������b�� In
particular	 what is the factor by which the unstable solution is ampli
ed from one step to
the next�
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���� The Lax Equivalence Theorem

�This section is rather sketchy at the moment� omitting some essential points of rigor as well
as explanation� especially in two areas� the application of the operator A on a dense subspace rather
than the whole space B� and the relationship between continuous and discrete norms� For a more
precise discussion see Richtmyer and Morton��

The essential idea of the Lax Equivalence Theorem is this� for consistent linear 
nite
di
erence models	 stability is a necessary and su�cient condition for convergence� This is an
analog of the Dahlquist Equivalence Theorem for ordinary di
erential equations �Theorem
�����	 except that the latter is valid for nonlinear problems too�

Aside from the assumption of linearity	 the formulation of the Lax Equivalence Theo�
rem is very general� Let B be a Banach space �a complete normed vector space� with norm
denoted by k�k� In applications of interest here	 each element of B will be a function of one
or more space variables x� Let A �B�B be a linear operator on this space� Here	 A will be
a di
erential operator� We are given the initial value problem

ut�t� �Au�t�� �� t�T� u��� �u�� �������

where A is 
xed but u� may range over all elements of B� �Actually	 A only has to be
de
ned on a dense subset of B�� This initial value problem is assumed to be well�posed	
which means that a unique solution u�t� exists for any initial data u� and u�t� depends
continuously upon the initial data�

EXAMPLE ������ Suppose we wish to solve ut � ux for x� ������	 t� �	 with initial
data f�x�	 and we wish to look for solutions in the space L�� In this case each u�t� in �������
is a function of x	 namely u�x�t�� �Technically we should not use the same symbol u in
both places�� The Banach space B is L�	 A is the 
rst�order di
erentiation operator �x	 and
u� � f �

EXAMPLE ������ Suppose we wish to solve ut � uxx for x � ������	 t� �	 with initial
data f�x� and boundary conditions u���� t� � u��� t� � �� Again	 each u�t� is a function of
x� Now an appropriate Banach space might be C�������	 the set of continuous functions of
x� ������ with value � at x���	 together with the supremum norm�

Abstractly� u�t� is nothing more than an element in a Banach space B� and
this leaves room for applications to a wide variety of problems in di�erential
equations� As in the examples above� B might be L
 and A might be �x or
�

x� and homogeneous boundary conditions could be included by restricting
B appropriately� More generally� u�t� could be an vector�valued function of
multiple space variables�

The next step is to de�ne a general �nite di�erence formula� In the
abstract setting� this is a family of bounded linear operators

Sk � B�B� �������
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where the subscript k indicates that the coe cients of the �nite di�erence
formula depend on the time step� We advance from one step to the next by a
single application of Sk�

vn���Skv
n� hence vn�Sn

k v
�� �������

where Sn
k abbreviates �Sk�

n� �Watch out for the usual confusion of notation�
the n in vn is a superscript� while in Sn

k it is an exponent�� For simplicity�
but no more essential reason� we are assuming that the problem ������� and
hence Sk have no explicit dependence on t� But Sk does potentially depend
on k� and this is an important point� On the other hand it does not explicitly
depend on the space step h� for we adopt the following rule�

h is a �xed function h�k� of k�

For example� we might have h� k
� �� constant� or h�
q
k

 �
 constant��

If there are several space dimensions� each may have its own function hj�k��
More generally� what we really need is grid�k�� not h�k�! there is no need at
all for the grid to be regular in the space dimensions�

EXAMPLE ������ Lower�order terms� For the UW model of ut �ux	 the discrete solution
operator is de
ned by Skv

n
j � vnj ���vnj���vnj �	 and if � is held constant as k� �	 this

formula happens to be independent of k� The natural extension of UW to ut � ux�u	 on
the other hand	 is Skv

n
j � vnj ���vnj���vnj ��kvnj 	 and here there is an explicit dependence

on k� This kind of k�dependence appears whenever the operator A involves derivatives of
di
erent orders�

Implicit or multistep �nite di�erence formulas are not excluded by this for�
mulation� As explained in x���� an implicit formula may still de�ne a bounded
operator Sk on an appropriate space such as �



h� and a multistep formula can

be reduced to an equivalent one�step formula by the introduction of a vector
wn��vn� � � � �vn���s��

Let us now be a bit more systematic in summarizing how the setup for the
Lax Equivalence Theorem does or does not handle the various complications
that make real problems di�er from ut� ux and ut� uxx�
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� Nonlinearity
The restriction here is essential� the Lax�Richtmyer theory does not han�
dle nonlinear problems� �However� see various more recent papers by
Sanz�Serna and others��

� Multiple space dimensions
� Implicit �nite di�erence formulas
Both of these are included as part of the standard formulation�

� Time�varying coe�cients
Initial�value problems with time�varying coe cients are not covered in the
description given here or in Richtmyer and Morton� but this restriction
is not essential� The theory can be straightforwardly extended to such
problems�

� Boundary conditions
� Space�varying coe�cients
� Lower�order terms
All of these are included as part of the standard formulation� and they
have in common the property that they all lead to �nite�di�erence ap�
proximations Sk that depend on k� as illustrated in Example ����� above�

� Systems of equations
� Higher�order initial�value problems
� Multistep �nite di�erence formulas
These are covered by the theory� if we make use of the usual device of
reducing a one�step vector �nite di�erence approximation to a �rst�order
initial�value problem�

As in Chapter �� we begin a statement of the Lax�Richtmyer theory by
de�ning the order of accuracy and consistency of a �nite di�erence formula�

fSkg has order of accuracy p if

ku�t�k��Sku�t�k�O�kp��� as k� � �������

for any t� ���T �	 where u�t� is any su�ciently smooth solution to the initial�
value problem �
������ It is consistent if it has order of accuracy p� ��

There are di�erences between this de�nition and the de�nition of order of ac�
curacy for linear multistep formulas in x���� Here� the �nite di�erence formula
is applied not to an arbitrary function u� but to a solution of the initial value
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problem� In practice� however� one still calculates order of accuracy by substi�
tuting formal Taylor expansions and determining up to what order the terms
cancel �Exercise �������

Another di�erence is that in the case of linear multistep formulas for
ordinary di�erential equations� the order of accuracy was always an integer�
and so consistency amounted to p� �� Here� non�integral orders of accuracy
are possible� although they are uncommon in practice�

EXAMPLE ������ Non�integral orders of accuracy� The 
nite di
erence approximation
to ut �ux	

Skv
n
j � vnj ���vnj���vnj ��kp��� �� constant �������

is a �contrived� example with order of accuracy p	 if p is any constant in the range ������ A
slightly less contrived example with order of accuracy p is

Skv
n
j � vnj �

k

�h
�vnj���vnj���� with h� kp�� �������

for any p� ������

As with ordinary di�erential equations� a �nite di�erence formula for a
partial di�erential equation is de�ned to be convergent if and only if it con�
verges to the correct solution as k� � for arbitrary initial data�

fSkg is convergent if

lim
k��
nk�t

kSn
ku����u�t�k�� �����	�

for any t � ���T �	 where u�t� is the solution to the initial�value problem
�
����� for any initial data u��

Note that there is a big change in this de�nition from the de�nition of
convergence for linear multistep formulas in x���� There� a �xed formula had
to apply successfully to any di�erential equation and initial data� Here� the
di�erential equation is �xed and only the initial data vary�

The de�nition of stability is slightly changed from the ordinary di�erential
equation case� because of the dependence on k�

fSkg is stable if for some C � �	

kSn
k k�C �����
�

for all n and k such that ��nk�T �
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This bound on the operator norms kSn
k k is equivalent to

kvnk� kSn
k v

�k�Ckv�k

for all v� �B and ��nk�T �
Here is the Lax Equivalence Theorem �compare Theorem ������

LAX EQUIVALENCE THEOREM

Theorem ���� Let fSkg be a consistent approximation to a well�posed
linear initial�value problem �
������ Then fSkg is convergent if and only if
it is stable�

Proof� �Not yet written�

The following analog to Theorem ���� establishes that stable discrete for�
mulas have the expected rate of convergence�

GLOBAL ACCURACY

Theorem ���� Let a convergent approximation method of order of accu�
racy p be applied to a well�posed initial�value problem �
����� 
with some
additional smoothness assumptions����� Then the computed solution satis�
�es

kv�t��u�t�k�O�kp� as k� � �������

uniformly for all t� ���T ��

Proof� �Not yet written�

A number of remarks should be made about the developments of this
section�

� The de�nitions of convergence and of consistency make reference to the
initial�value problem �������� but the de�nition of stability does not� One can
ask whether a �nite di�erence formula is stable or unstable without having
any knowledge of what partial di�erential equation� if any� it approximates�

� No assumption has been made that the initial�value problem is hyper�
bolic or parabolic� so long as it is well�posed� Indeed� as far as the theory is
concerned� the initial�value problem may not involve a di�erential operator or
an x variable at all� �There are some useful applications of the Lax Equiva�
lence Theorem of this kind� one of which involves the so�called Trotter product
formula of mathematical physics��
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� As in x���� we are dealing with the limit in which t is �xed and k� ��
The situation for t�� with k �xed will be discussed in x����

� The de�nition of the �nite di�erence formula ������� depends upon the
mesh function h� h�k�� Consequently� whether the formula is stable or not
may depend on h�k� too� Examples are given in x����

� As in x���� it is quite possible for an unstable �nite di�erence formula to
give convergent results for some initial data� For example� this might happen
if the initial data were particularly smooth� But the de�nition of convergence
requires good results for all possible initial data�

� Relatedly� the theory assumes exact arithmetic� discretization errors are
included� but not rounding errors� The justi�cation for this omission is that
the same phenomena of stability and instability govern the propagation of both
kinds of errors� so that in most situations a prediction based on discretization
errors alone will be realistic� On the other hand� the fact that rounding errors
occur in practice is one motivation for requiring convergence for all initial data�
The initial data prescribed mathematically for a particular computation might
be smooth� but the rounding errors superimposed on them will not be�

� Consistency� convergence� and stability are all de�ned in terms of a norm
k�k� and it must be the same norm in each case�

� It is quite possible for a �nite�di�erence model to be stable in one norm
and unstable in others! see x���� This may sound like a defect in the theory�
but in such cases the instability is usually so weak that the behavior is more
or less stable in practice�

We close this section by mentioning a general theorem that follows from
the de�nition of stability�

PERTURBATIONS OF A STABLE FAMILY

Theorem ���� Let fSkg be a stable family of operators	 and let Tk be a
family of operators satisfying kTkk�O�k� as k� �� Then fSk�Tkg is also
a stable family�

Proof� �not yet written! see Richtmyer " Morton� x�����

Theorem ��� has an important corollary that generalizes Example ������

LOWER ORDER TERMS

Theorem ���� Let fSkg be a consistent �nite di�erence approximation to
a well�posed linear initial�value problem �
����� in which A is a di�erential
operator acting on one or more space variables� The stability of fSkg is
determined only by the terms that relate to spatial derivatives�
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Proof� �sketch� If the �nite di�erence approximation is consistent� then
lower�order terms modify the �nite di�erence formula only by terms of order
O�k�� so by Theorem ��� they do not a�ect stability�

EXAMPLE ������ If fSkg is a stable 
nite di
erence approximation of ut � ux on
������	 then the approximation remains stable if additional terms are added so that
it becomes consistent with ut � ux�f�x�u�	 for any function f�x�u�� The same is true for
the equation ut � uxx� A consistent change from ut � uxx to ut � uxx�f�x�u�ux�	 on the
other hand	 might destroy stability�

References�
� Chapters � and � of R� D� Richtmyer and K� W� Morton� Di�erence

Methods for Initial�Value Problems	 Wiley� ���	�
� P� D� Lax and R� D� Richtmyer� �Survey of the stability of linear �nite

di�erence equations�� Comm� Pure Appl� Math� � ������� ��	�����

EXERCISES

� ������ Order of accuracy of the Lax�Wendro� formula� Consider the Lax�Wendro
 model
of ut �ux with k�h��� constant� In analogy to the developments of x���	 insert a formal
power series for u�xj��j � tn��n� to obtain a formula for the leading�order nonzero term of
the discretization error� Verify that the order of accuracy is ��
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���� The CFL condition

In ���� Richard Courant	 Kurt Friedrichs	 and Hans Lewy	 of the University of G�ottingen
in Germany	 published a famous paper entitled �On the partial di
erence equations of math�
ematical physics��� This paper was written long before the invention of digital computers	
and its purpose in investigating 
nite di
erence approximations was to apply them to prove
existence of solutions to partial di
erential equations� But the �CFL� paper laid the the�
oretical foundations for practical 
nite di
erence computations	 too	 and in particular	 it
identi
ed a fundamental necessary condition for convergence of any numerical scheme that
has subsequently come to be known as the CFL condition�

What Courant	 Friedrichs	 and Lewy pointed out was that a great deal can be learned
by considering the domains of dependence of a partial di
erential equation and of its
discrete approximation� As suggested in Figure �����a	 consider an initial�value problem for
a partial di
erential equation	 and let �x�t� be some point with t� �� �Despite the picture	
the spatial grid need not be regular	 or one�dimensional�� The mathematical domain of
dependence of u�x�t�	 denoted by X�x�t�	 is the set of all points in space where the initial
data at t� � may have some e
ect on the solution u�x�t��y
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Figure ������ Mathematical and numerical domains of dependence�

For example	 for ut � uxx or any other parabolic partial di
erential equation in one
space dimension	 X�x�t� will be the entire real axis	 because under a parabolic equation	
information travels in
nitely fast� The magnitude of the in�uence of far�away data may
decay exponentially with distance	 but in the de
nition of the domain of dependence it
matters only whether this in�uence is zero or nonzero� The same conclusion holds for the
Schr�odinger equation ut � iuxx�

On the other hand for ut �ux	 ut �ux�u	 utt �uxx	 or any other hyperbolic partial dif�
ferential equation or system of equations	 including nonlinear equations such as ut � � ��u

��x	

�In German� ��Uber die partiellen Di�erenzengleichungen der mathematischen Physik�� Math� Ann�

��� ��	
�
� �
���� An English translation appeared much later in IBM Journal �� ��	��
� 
���
���
yMore precisely� for a problem in d space dimensions� X�x�t
 is the intersection of all closed sets
E�Rd with the property that the data on RdnE has no e�ect on u�x�t
�
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X�x�t� is 
nite for each x and t� The reason is that in hyperbolic problems	 information
travels at a 
nite speed� Figure �����a suggests a problem of this sort	 since the domain
of dependence shown there is 
nite� For the model problem ut � ux	 X�x�t� is the single
point fx�tg	 but the more typical situation for hyperbolic problems is that the domain of
dependence covers a bounded range of values of x� In one�dimensional problems the curves
that bound this range	 as in Figure �����a	 are the characteristic curves for the partial dif�
ferential equation	 and these are straight lines in simple examples but usually more general
curves in problems containing variable coe�cients or nonlinearity�

A numerical approximation also has a domain of dependence	 and this is suggested in
Figure �����b� With an implicit 
nite di
erence formula	 each value vnj depends on all the
values at one or more earlier steps	 and the domain of dependence is unbounded� On the
other hand with an explicit formula	 vnj depends on only a 
nite range of values at previous
steps� For any 
xed k and h	 the domain of dependence will then fan out in a triangle
that goes backwards in time� The triangle will be symmetrical for a three�point formula
like Lax�Wendro
 or leap frog	 symmetrical and twice as wide for a 
ve�point formula like
fourth�order leap frog	 asymmetrical for a one�sided formula like upwind	 and so on�

The numerical domain of dependence for a 
xed value k	 denoted by Xk�x�t�	 is de
ned
to be the set of points xj whose initial data v�j enter into the computation of v�x�t�� For
each time step k	 this set is discrete	 but what really matters is the limit k� �� We de
ne
the limiting numerical domain of dependence	 X��x�t�	 to be the set of all limit points
of the sets Xk�x�t� as k� ��� This will be a closed subset of the spatial domain�typically
an interval if there is one space variable	 or a parallelepiped if there are several�

From the point of view of domain of dependence	 there are three general classes of dis�
crete approximations� In the case of an implicit 
nite di
erence model	 Xk�x�t� is unbounded
for each k	 and therefore	 provided only that the spatial grid becomes 
ner everywhere as
k� �	 X��x�t� will be the entire spatial domain� �Spectral methods are also essentially of
this type� although the time stepping may be explicit	 their stencils cover the entire spatial
domain	 and so Xk�x�t� is unbounded for each k��

At the other extreme is the case of an explicit 
nite di
erence formula with a spatial
grid that scales in proportion to k	 so that Xk�x�t� and X��x�t� are bounded sets for each x
and t� In the particular case of a regular grid in space with mesh ratio k�h��� constant	
their size is proportional to the width of the stencil and inversely proportional to �� The
latter statement should be obvious from Figure �����b�if � is cut in half	 it will take twice
as many time steps to get to �x�t� for a 
xed h	 and so the width of the triangle will double�

Between these two situations lies the case of an explicit 
nite di
erence formula whose
spatial grid is re
ned more slowly than the time step as k� ��for example	 a regular
grid with k � o�h�� Here	 Xk�x�t� is bounded for each k	 but X��x�t� is unbounded� This
in�between situation shows that even an explicit formula can have an unbounded domain of
dependence in the limiting sense�

The observation made by Courant	 Friedrichs	 and Lewy is beautifully simple� a nu�
merical approximation cannot converge for arbitrary initial data unless it takes all of the
necessary data into account� �Taking the data into account� means the following�

�More precisely� for a problem in d space dimensions� X��x�t
 is the set of all points s� Rd every
open neighborhood of which contains a point of Xk�x�t
 for all su�ciently small k�
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THE CFL CONDITION� For each �x�t�� the mathematical domain of dependence is
contained in the numerical domain of dependence�

X�x�t� 	 X��x�t��

Here is their conclusion�

CFL THEOREM

Theorem ���� The CFL condition is a necessary condition for the convergence of a
numerical approximation of a partial di�erential equation� linear or nonlinear�

The justi
cation of Theorem ��� is so obvious that we shall not attempt to state or
prove it more formally� But a few words are in order to clarify what the terms mean� First	
the theorem is certainly valid for the particular case of the linear initial�value problem �������
with the de
nition of convergence ������� provided in the last section� In particular	 unlike
the von Neumann condition of the next section	 it holds for any norm k �k and any partial
di
erential equation	 including problems with boundary conditions	 variable coe�cients	 or
nonlinearity� But one thing that cannot be changed is that Theorem ��� must always be
interpreted in terms of a de
nition of convergence that involves arbitrary initial data� The
reason is that for special initial data	 a numerical method might converge even though it had
a seemingly inadequate domain of dependence� The classic example of this is the situation in
which the initial data are so smooth that they form an analytic function� Since an analytic
function is determined globally by its behavior near any point	 a 
nite di
erence model
might sample �too little� initial data in an analytic case and still converge to the correct
solution�at least in the absence of rounding errors�

A priori	 the CFL condition is a necessary condition for convergence� But for linear
problems	 the Lax Equivalence Theorem asserts that convergence is equivalent to stability�
From Theorems ��� and ��� we therefore obtain�

CFL CONDITION AND STABILITY

Theorem ��	� Let fSkg be a consistent approximation to a well�posed linear initial�
value problem 	�����
� Then the CFL condition is a necessary condition for the stability
of fSkg�

Unlike Theorem ���	 Theorem ��� is valid only if its meaning is restricted to the linear
formulations of the last section� The problem of stability of 
nite di
erence models had
not yet been identi
ed when the CFL paper appeared in ����	 but Theorem ��� is the form
in which the CFL result is now generally remembered� The reason is that the connection
between convergence and stability is so universally recognized now that one habitually thinks
of stability as the essential matter to be worried about�

The reader may have noticed a rather strange feature of Theorem ���� In the last
section it was emphasized that the stability of fSkg has nothing to do with what initial�
value problem	 if any	 it approximates� Yet Theorem ��� states a stability criterion based on
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an initial�value problem� This is not a logical inconsistency	 for nowhere has it been claimed
that the theorem is applicable to every 
nite di
erence model fSkg an initial�value problem
is brought into the act only when a consistency condition happens to be satis
ed� For more
on this point	 see Exercise ������

Before giving examples	 we shall state a fundamental consequence of Theorem ����

EXPLICIT MODELS OF PARABOLIC PROBLEMS

Theorem ��
� If an explicit 
nite di�erence approximation of a parabolic initial�value
problem is convergent� then the time and space steps must satisfy k� o�h� as k� ��

Proof� This assertion follows from Theorem ��� and the fact that an explicit 
nite
di
erence model with k 
� o�h� has a bounded numerical domain of dependence X��x�t� for
each �x�t�	 whereas the mathematical domain of dependence X�x�t� is unbounded�

The impact of Theorem ��� is far�reaching� parabolic problems must always be solved
by implicit formulas	 or by explicit formulas with small step sizes� This would make them
generally more di�cult to treat than hyperbolic problems	 were it not that hyperbolic prob�
lems tend to feature shock waves and other strongly nonlinear phenomena�a di
erent source
of di�culty that evens the score somewhat�

In computations involving more complicated equations with both convective and dif�
fusive terms	 such as the Navier�Stokes equations of �uid dynamics	 the considerations of
Theorem ��� often lead to numerical methods in which the time iteration is based on a
splitting into an explicit substep for the convective terms and an implicit substep for the
di
usive terms� See any book on computational �uid dynamics�

EXAMPLE ������ Approximations of ut � ux� For the equation ut � ux	 all information
propagates leftward at speed exactly �	 and so the mathematical domain of dependence for
each �x�t� is the single point X�x�t� � fx� tg� Figure ����� suggests how this relates to the
domain of dependence for various 
nite di
erence formulas� As always	 the CFL condition is
necessary but not su�cient for stability� it can prove a method unstable	 but not stable� For
the 
nite di
erence formulas of Table ����� with k�h��� constant	 we reach the following
conclusions�

LF�� unstable for �� � 

UW	 LF	 LW	 EUx	 LXF� unstable for �� � 

�Downwind� formula� unstable for all � 

BEx	 CNx	 BOXx� no restriction on ��

We shall see in the next section that these conclusions are sharp except in the cases of LF�
and EUx �and LF	 marginally	 whose precise condition for instability is �� � rather than
�� ���

EXAMPLE ������ Approximations of ut � uxx� Since ut � uxx is parabolic	 Theorem
��� asserts that no consistent explicit 
nite di
erence approximation can be stable unless
k� o�h� as k� �� Thus for the 
nite di
erence formulas of Table �����	 it implies

EUxx	 LFxx� unstable unless k� o�h�	

BExx	 CN	 BOXxx	 CN�� no restriction on h�k��
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	a
 LW or EU	 �� � 	b
 LW or EU	 �� � 	c
 UW	 �� �

Figure ������ The CFL condition and ut � ux� The dashed line represents the
characteristic of the PDE and the solid line represents the stencil of the 
nite
di
erence formula�

The next section will show that these conclusions for LFxx and EUxx are not sharp� In fact	
for example	 EUxx is stable only if k� �

�h
��

The virtue of the CFL condition is that it is extremely easy to apply�
Its weakness is that it is necessary but not su cient for convergence� As
a practical matter� the CFL condition often suggests the correct limits on
stability� but not always� and therefore it must be supplemented by more
careful analysis�

EXERCISES

� ������ Multidimensional wave equation� Consider the second�order wave equation in d space
dimensions�

utt �ux�x� � � � ��uxdxd �

	a
 Write down the d�dimensional analog of the simple second�order 
nite di
erence ap�
proximation

vn��j ��vnj �vn��j ����vnj����vnj �vnj���

for a regular grid with space step h in all directions and �� k�h� constant�

	b
 What does the CFL condition tell you about values of � for which this model must be
unstable� �Hint� if you are in doubt about the speed of propagation of energy under
the multidimensional wave equation	 consider the fact that the equation is isotropic�
i�e�	 energy propagates in the same manner regardless of direction�� �Another hint� be
careful!�
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���� The von Neumann condition

for scalar one�step formulas

Von Neumann analysis is the analysis of stability by Fourier methods� In principle
this restricts its applicability to a narrow range of linear	 constant�coe�cient 
nite di
er�
ence formulas on regular grids	 with errors measured in the 	�h norm� In practice	 the von
Neumann approach has something to say about almost every 
nite di
erence model� It is
the mainstay of practical stability analysis�

The essential idea is to combine the ideas of x���	 specialized to the 	�h norm	 with those
of xx���	���� For one�step scalar models the ensuing results give a complete characterization
of stability in terms of the �ampli
cation factors� introduction in x���	 which for stability
must lie within a distance O�k� of the unit disk as k� �� For multistep or vector problems
one works with the associated �ampli
cation matrices� introduced in x���	 and a complete
analysis of stability requires looking not only at the spectra of these matrices	 which amount
to ampli
cation factors	 but also at their resolvents or pseudospectra� We shall treat the
one�step scalar case in this section and the general case in the next two sections�

We begin with two easy lemmas� The 
rst is a generalization of the well�known in�
equality ���
�����e �

Lemma ������ For any real numbers a��� and b� ��

���a�b� eab� �������

Proof� Both sides are nonnegative	 so taking the bth root shows that it is enough to
prove ��a� ea� This inequality is trivial �just draw a graph!��

The second lemma deals with arbitrary sets of numbers sk � �	 which in our applica�
tions will be norms such as kSkk �

Lemma ������ Let fskg be a set of nonnegative numbers indexed by k � �� and let
T � � be 
xed� Then �sk�n�C� for some C�� �� uniformly for all k and n with kn� T � if
and only if sk� ��O�k� as k� ��

Proof� If sk � ��C�k for each k	 then by Lemma �����	 �sk�n � ���C�k�n � eC�
kn �

eC�
T � Conversely	 if �sk�n�C� for all kn�T 	 then in particular	 for each k	 �sk�n�C� for

some value of n with nk �T��� This implies sk �C
��n
� � �C

��T
� �T��n� �C

��T
� �k � ��O�k��

Now we are ready for von Neumann analysis� Suppose that ������� is a well�posed
linear initial�value problem in which u�t� is a scalar function of x and B is the space 	�h	
with k�k denoting the 	�h�norm� Suppose also that for each k� �	 the operator Sk of �������
denotes an explicit or implicit one�step 
nite di
erence formula �������� with coe�cients
f��g and f��g that are constant except for the possible dependence on k� If Sk is implicit	
it is assumed to satisfy the solvability condition ��������	 which ensures that it has a bounded

ampli
cation factor function gk�
� � "ak�
��"bk�
��
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By �������	 the formula is stable if and only if

kSnk k�C for ��nk�T

for some constant C� By Theorem ���	 this is equivalent to the condition

�kgkk��n�C for ��nk�T�

or equivalently	

jgk�
�jn�C for ��nk�T� �������

where C is a constant independent of 
� By Lemma �����	 this is equivalent to

jgk�
�j � ��O�k� �������

as k� �	 uniformly in 
� What this means is that there exists a constant C � such that for
all n and k with ��nk�T 	 and all 
 � ����h���h�	

jgk�
�j � ��C �k� �������

We have obtained the following complete characterization of stable 
nite di
erence
formulas in our scalar 	�h problem�

VON NEUMANN CONDITION

FOR SCALAR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� A linear� scalar� constant�coe�cient one�step 
nite di�erence formula as
described above is stable in 	�h if and only if the ampli
cation factors gk�
� satisfy

jgk�
�j � ��O�k� �������

as k� �� uniformly for all 
 � ����h���h��

With Theorem ��� in hand	 we are equipped to analyze the stability of many of the

nite di
erence formulas of x����

EXAMPLE ������ Upwind formula for ut �ux� In ������� we computed the ampli
cation
factor for the upwind formula as

g�
� � �������ei�h� �������

assuming that � � k�h is a constant� For any �	 this formula describes a circle in the
complex plane	 shown in Figure �����	 as 
 ranges over ����h���h�� The circle will lie in
the closed unit disk	 as required by �������	 if and only if �� �	 which is accordingly the
stability condition for the upwind formula� This matches the restriction suggested by the
CFL condition �Example �������
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	a
 �� � �stable� 	b
 �� � �unstable�

Figure ������ Ampli
cation factors for the upwind model of ut � ux �solid
curve�� The shaded region is the unit disk�

EXAMPLE ������ Crank�Nicolson formulas for ut � ux� ut � uxx� ut � iuxx� In ��������
we found the ampli
cation factor for the Crank�Nicolson formula to be

g�
� �
��� k

h� sin� �h
�

��� k
h� sin� �h

�

� �������

Here jg�
�j � � for all 
	 regardless of k and h� Therefore the Crank�Nicolson formula is
stable as k� �	 no matter how k and h are related� �It will be consistent	 hence convergent	
so long as h�k� � o��� as k� ���

For the Crank�Nicolson model of ut �ux	 the corresponding formula is

g�
� �
�� ik

�h sin
h

�� ik
�h sin
h

� �������

Now jg�
�j� � for all 
	 so the formula is again unconditionally stable� The same is true of
the Crank�Nicolson model of ut � iuxx	 whose ampli
cation factor function is

g�
� �
���i kh� sin� �h

�

���i kh� sin� �h
�

� �������

EXAMPLE ������ Euler formulas for ut � ux and ut � uxx� The ampli
cation factor for
the Euler model of ut �uxx was given in �������� as

g�
� � ���
k

h�
sin�


h

�
� ��������

As illustrated in Figure �����a	 this expression describes the interval ����k�h���� in the
complex plane as 
 ranges over ����h���h�� If � � k�h� is held constant as k� �	 we
conclude that the Euler formula is stable if and only if �� �

� � This is a tighter restriction
than the one provided by the CFL condition	 which requires only k� o�h��
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	a
 ut �uxx 	b
 ut �ux

Figure ������ Ampli
cation factors for the Euler models of ut �uxx and ut �ux�

The ampli
cation factor for the Euler model of ut �ux is

g�
� � ��
ik

h
sin
h� ��������

which describes a line segment tangent to the unit circle in the complex plane �Figure
�����b�� Therefore the largest ampli
cation factor isr

��
k�

h�
�

If � � k�h is held 
xed as k� �	 then this 
nite di
erence formula is therefore unstable
regardless of �� On the other hand the square root will have the desired magnitude ��O�k�
if k��h� �O�k�	 i�e� k �O�h��	 and this is accordingly the stability condition for arbitrary
mesh relationships h� h�k�� Thus in principle the Euler formula is usable for hyperbolic
equations	 but it is not used in practice since there are alternatives that permit larger time
steps k�O�h�	 as well as having higher accuracy�

EXAMPLE ������ Lax�Wendro� formula for ut � ux� The ampli
cation factor for the
Lax�Wendro
 formula was given in �������� as

g�
� � �� i�sin
h���� sin�

h

�
� ��������

if �� k�h is a constant� Therefore jg�
�j� is

jg�
�j� � ������ sin�

h

�
���� sin�


h

�
���� sin� 
h�

Applying the identity sin� �� �sin� �
� cos� �

� � ��sin� �
��sin� �

� � to the last term converts this
expression to

jg�
�j� � ����� sin�

h

�
���� sin�


h

�
���� sin�


h

�
���� sin�


h

�

� ����������sin�

h

�
�

��������

If � is 
xed	 it follows that the Lax�Wendro
 formula is stable provided that ����� � �� �
� ����

This is true if and only if �� �	 which is accordingly the stability condition�

Tables ����� and ����� summarize the orders of accuracy and the stability
limits for the �nite di�erence formulas of Tables ����� and ������ The results
listed for multistep formulas will be justi�ed in x����
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order of CFL stability Exact stability
Formula accuracy restriction restriction

�EUx � Euler� � �� � unstable

�BEx � Backward Euler� � none none

�CNx � Crank�Nicolson� � none none

LF � Leap frog � �� � �� �

BOXx � Box � none none

LF� � Fourth�order Leap frog � �� � �� ��	�
 � � �


LXF � Lax�Friedrichs � �� � �� �

UW � Upwind � �� � �� �

LW � Lax�Wendro� � �� � �� �

Table ������ Orders of accuracy and stability limits for various
�nite di�erence approximations to the wave equation ut � ux� with
�� k
h� constant �see Table �������

order of CFL stability Exact stability
Formula accuracy restriction restriction

EUxx � Euler �y none 
� �



BExx � Backward Euler � none none

CN � Crank�Nicolson � none none

�LFxx � Leap frog� � none unstable

BOXxx � Box � none none

CN� � Fourth�order CN � none none

DF � DuFort�Frankel �

 none none



Table ������ Orders of accuracy and stability limits for various
�nite di�erence approximations to the heat equation ut � uxx� with

 � k
h
 � constant �see Table ������� �The orders of accuracy are
with respect to h� not k as in ���������

�See Exercise ������

ySee Exercise ������

��See Exercise ������
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EXERCISES

� ������ Generalized Crank�Nicolson or �theta method�� Let the heat equation ut � uxx be
modeled by the formula

vn��j � vnj �
k�����

h�
�vnj����vnj �vnj����

k�

h�
�vn��j�� ��vn��j �vn��j�� � ��������

with �� � � �� For � � �	 �
� 	 � this is Euler	 Crank�Nicolson	 or backward Euler formula	

respectively�

	a
 Determine the ampli
cation factor function g�
��

	b
 Suppose �� k�h� is held constant as k� �� For which � and � is �������� stable�

	c
 Suppose �� k�h is held constant as k� �� For which � and � is �������� stable�

	d
 Your boss asks you to solve a heat conduction problem involving a space interval of
length � and a time interval of length �� She wants an answer with errors on the
order of some number �� �� Roughly speaking �order of magnitude in ��	 how many
�oating�point operations will you have to perform if you use �� �	 �� �

� 	 and �� ��

� ������ The downwind formula� The downwind approximation to ut �ux is

vn��j � Skv
n
j � vnj �

k

h
�vnj �vnj����

In this problem	 do not assume that k�h is held constant as k� � let h�k� be a completely
arbitrary function of k�

	a
 For what functions h�k�	 if any	 is this formula stable� �Use Theorem ��� and be
careful!�

	b
 For what functions h�k�	 if any	 is it consistent�

	c
 For what functions h�k�	 if any	 is it convergent� �Use the Lax Equivalence Theorem��

	d
 How does the result of 	c
 match the prediction by the CFL condition�

� ������ The CFL�stability link� �This problem was originally worked out by G� Strang in
the ����#s�� Bernstein�s inequality asserts that if

g�
� �

mX
���m

��e
i��

for some constants f��g	 then
kg�k��mkgk��

where k�k� denotes the maximum over ������	 and g� is the derivative dg�d
�

Derive from this the CFL condition� if an explicit 
nite di
erence formula

vn��j �

mX
���m

��v
n
j��

is stable as h� � with k�h��� constant	 and consistent with ut �ux	 then ��m� �Hint�
what does consistency imply about the behavior of g�
� near 
 � ���
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� ������ A thought experiment� Suppose the Lax�Wendro
 model of ut �ux is applied on an
in
nite grid with h� ���� to compute an approximate solution at t� �� The initial data are

u��x� � cos��x or u��x� � maxf����jxjg�

and the time step is k��h with

�a �
�

�
or �b �

�

�
�

Thus we have four problems� �a	 �b	 �a	 �b� Let E�a	 E�b	 E�a	 E�b denote the corresponding
maximum �	�h � errors over the grid at t� ��

One of the four numbers E�a	 E�b	 E�a	 E�b depends signi
cantly on the machine precision	

	 and thus deserves a star � in front of it �see x�� the other three do not� Which one�
Explain carefully why each of them does or does not depend on 
� In the process	 give order�
of�magnitude predictions for the four numbers	 such as E � ����	 E � ����	 E � �
�����
Explain your reasoning!

If you wish	 you are welcome to turn this thought experiment into a computer experiment�

� ������ The Euler formula for the heat equation� Show that if �� ���	 the order of accuracy
of the Euler formula for ut � uxx increases from � to �� �Note� Such bits of good fortune
are not always easy to take advantage of in practice	 since coe�cients and hence e
ective
mesh ratios may vary from point to point��

� ������ Weak inequalities� In Tables ����� and �����	 the stability restrictions for one�step
formulas all involve weak ����� rather than strong ����� inequalities� Prove that this
is a general phenomenon� the stability condition for a formula of the type considered in
Theorem ��� may be of the form k� f�h� but never k�f�h��
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��	� Resolvents� pseudospectra� and the

Kreiss matrix theorem

Powers of matrices appear throughout numerical analysis� In this book they arise
mainly from equation �������	 which expresses the computed solution at step n for a numer�
ical model of a linear problem in terms of the solution at step ��

vn �Snk v
�� �������

In this formula Sk represents a bounded operator on a Banach space B	 possibly di
erent
for each time step k � �� Thus we are dealing with a family of operators fSkg indexed by
k� According to the theory presented in x���	 a key question to ask about such a family of
operators is whether it is stable	 i�e�	 whether a bound

kSnk k�C �������

holds for all n and k with ��nk�T �
This question about operators may be reduced to a question about matrices in two

distinct ways� The 
rst is by Fourier or von Neumann analysis	 applicable in cases where
one is dealing with a regular grid	 constant coe�cients	 and the ��norm� For one�step scalar
formulas Fourier analysis reduces Sk to a scalar	 the ampli
cation factor g�
� treated in the
last section� For vector formulas	 the subject of this and the next section	 we get the more
interesting Fourier analogue cvn�
� �Gk�
�n bv��
�� �������

Here Gk�
�n is the nth power of the ampli
cation matrix	 de
ned in x���	 and the equivalence
of ������� and ������� implies that the norm of Gk�
� determines the norm of Snk �

kSnk k� � sup
������h	��h	

kGk�
�nk�

The question of stability becomes	 are the norms kGk�
�nk bounded by a constant for all
nk � T 	 uniformly with respect to 
 � Note that here the dimension N of Gk�
� is 
xed	
independent of k and h�

For problems involving variable coe�cients	 variable grids	 or translation�dependent
discretizations such as Chebyshev spectral methods �Chapter ��	 Fourier analysis cannot be
applied� Here a second and more straightforward reduction to matrices becomes relevant�
One can simply work with Sk itself as a matrix�that is	 work in space itself	 not Fourier
space� If the grid is unbounded	 then the dimension of Sk is in
nite	 but since the grids one
computes with are usually bounded	 Sk is usually 
nite in practice� The dimension increases
to �	 however	 as k� ��

In summary	 the stability analysis of numerical methods for partial di
erential equa�
tions leads naturally to questions of whether the powers of a family of matrices have uni�
formly bounded norms	 or	 as the problem is often put	 whether a family of matrices is
power�bounded� Depending on the circumstances	 the matrices in the family may be of

xed dimension or varying dimensions�
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Figure ������ Norms of powers of the matrix Ak of ������� for various k� Each Ak

for k � � is individually power�bounded	 but the family fAkg
k
�� is not power�
bounded	 since the powers come arbitrarily close to those of the limiting defective
matrix A� �dashed��

In x��� we have already presented an algebraic criterion for power�boundedness of
a matrix A� According to the �alternative proof� of Theorem ���	 the powers kAnk are
bounded if and only if the eigenvalues of A lie in the closed unit disk and any eigenvalues on
the unit circle are nondefective� For families of matrices	 however	 matters are not so simple�
The eigenvalue condition is still necessary for power�boundedness	 but it is not su�cient�
To illustrate this	 consider the two families of matrices

Ak �

�
� �

� ��k

�
� Bk �

�
� k��

� �

�
�������

for k � �� For each k � �	 Ak and Bk are individually power�bounded	 but neither fAkg
nor fBkg is power�bounded as a family� For fBkg the explanation is quite obvious� the
upper�right entry diverges to � as k� �	 and thus even the 
rst power kBkk is unbounded
as k� �� For fAkg the explanation is more interesting� As k� �	 these matrices come closer
and closer to a defective matrix whose powers increase in norm without bound� Figure �����
illustrates this e
ect�

In the next section we shall see that an unstable family much like fAkg arises in the
von Neumann analysis of the leap frog discretization of ut � ux with mesh ratio �� �� In
most applications	 however	 the structure of the matrices that arise is far from obvious by
inspection and one needs a general tool for determining power�boundedness�

What is needed is to consider not just the spectra of the matrices but also their
pseudospectra� The idea of pseudospectra is as follows� An eigenvalue of a matrix A is a
number z � C with the property that the resolvent matrix �zI�A��� is unde
ned� By
convention we may write k�zI�A���k � � in this case� A pseudo�eigenvalue of A is a
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number z where k�zI�A���k	 while not necessarily in
nite	 is very large� Here is the
de
nition�

Given 
� �� the number �� C is an 
�pseudo�eigenvalue of A if either of the following

equivalent conditions is satis
ed�

	i
 k��I�A���k� 
�� �

	ii
 � is an eigenvalue of A�E for some E � C
N�N with kEk� 
 �

The 
�pseudospectrum of A� denoted by $��A�� is the set of all of its 
�pseudo�

eigenvalues�

Condition 	i
 expresses the idea of an 
�pseudo�eigenvalue just described� Condition 	ii
 is
a mathematical equivalent with quite a di
erent �avor� though an 
�pseudo�eigenvalue of
A need not be near to any exact eigenvalue of A	 it is an exact eigenvalue of some nearby
matrix� The equivalence of conditions 	i
 and 	ii
 is easy to prove �Exercise �������

If a matrix is normal	 which means that its eigenvectors are orthogonal	� then the
��norm of the resolvent is just k�zI�A���k� � ��dist�z�$�A��	 where dist�z�$�A�� denotes
the distance between the point z and the set $�A� �Exercise ������� Therefore for each

� �	 $��A� is equal to the union of the closed balls of radius 
 about the eigenvalues of
A by condition 	ii
	 the eigenvalues of A are insensitive to perturbations� The interesting
cases arise when A is non�normal	 where the 
�pseudospectra may be much larger and the
eigenvalues may be highly sensitive to perturbations� Figure ����� illustrates this comparison
rather mildly by comparing the 
�pseudospectra of the two matrices

A �

�
��� �

� ���

�
� %A �

�
��� �

� ���

�
� �������

motivated by �������	 for 
 � ��������������� � � � ������ These two matrices both have the
spectrum f�������g	 but the pseudospectra of %A are considerably larger than those of A�

Roughly speaking	 matrices with larger pseudospectra tend to have larger powers	 even
if the eigenvalues are the same� Figure ����� illustrates this phenomenon for the case of the
two matrices A and %A of �������� Asymptotically as n��	 the powers decrease in both
cases at the rate �����n determined by the spectral radius	 ��A� � �� %A� � ���� The transient
behavior is noticeably di
erent	 however	 with the curve for k %Ank showing a hump by a
factor of about ��� centered around n� � before the eventual decay�

Factors of ��� are of little consequence for applications	 but then	 %A is not a very highly
non�normal matrix� In more extreme examples the hump in a 
gure like Figure ����� may
be arbitrarily high� To control it we must have a bound on the pseudospectra	 and this is
the subject of the Kreiss matrix theorem	 
rst proved in �����

�More precisely� a matrix is normal if there exists a complete set of orthogonal eigenvectors�
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 %A �non�normal�

Figure ������ Boundaries of 
�pseudospectra of the matrices A and %A of �������
for 
 � ���������� � � � ������ The dashed curve is the right half of the unit circle	
whose location is important for the Kreiss matrix theorem� The solid dots are
the eigenvalues�
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Figure ������ kAnk and k� %A�nk for the matrices A and %A of ��������
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KREISS MATRIX THEOREM

Theorem ���
� Let A be a matrix of dimension N � If

kAnk � C 
n� � �������

for some constant C� then

j��j � ��C
 
�� �$��A�� 

� �� �������

or equivalently�

k�zI�A���k �
C

jzj��

z� C � jzj� �� �������

Conversely� 	�����
�	�����
 imply

kAnk � eCminfN�n��g 
n� �� �������

Theorem ���� is stated for an individual matrix	 but since the bounds asserted are
explicit and quantitative	 the same result applies to families of matrices A� satisfying a
uniform bound kAn

�k�C	 provided the dimensions N are all the same� If the dimensions N
vary unboundedly	 then in �������	 only the factor n�� remains meaningful� The inequality
������� is sometimes called the Kreiss condition	 and the constant C there is the Kreiss
constant�

Proof� The equivalence of ������� and ������� follows trivially from de
nition 	i
 of
$��A�� The proof that ������� implies ������� is also straightforward if one considers the
power series expansion

�zI�A��� � z��I�z��A�z��A�� � � � �

Thus the real substance of the Kreiss Matrix theorem lies in the assertion that ������� implies
�������� This is really two assertions� one involving a factor N 	 the other involving a factor
n���

The starting point for both proofs is to write the matrix An as the Cauchy integral

An �
�

��i

Z



zn�zI�A��� dz� ��������

where & is any curve in the complex plane that encloses the eigenvalues of A� To prove that
kAnk satis
es the bound �������	 it is enough to show that jv�Anuj satis
es the same bound
for any vectors u and v with kuk� kvk� �� Thus let u and v be arbitrary N �vectors of this
kind� Then �������� implies

v�Anu �
�

��i

Z



znq�z�dz� ��������

where q�z� � v��zI�A���u� It can be shown that q�z� is a rational function of order N 	
i�e�	 a quotient of two polynomials of degrees at most N 	 and by �������	 it satis
es

jq�z�j �
C

jzj��
� ��������
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Let us take & to be the circle & � fz � C � jzj� ���n�����g	 which certainly encloses the
eigenvalues of A if ������� holds� On this circle �������� implies jq�z�j �C�n���� Therefore
�������� yields the bound

jv�Anuj �
�

��

Z



jzjnC�n��� jdzj

�
�

��
����n������nC�n���������n������

� ����n������n��C�n��� � eC�n����

In the last of these inequalities we have used Lemma ������ This proves the part of �������
involving the factor n���

The other part of �������	 involving the factor N 	 is more subtle� Integration by parts
of �������� gives

v�Anu �
��

��i�n���

Z



zn��q��z�dz�

Using the same contour of integration & as before and again the estimate jzn��j � e	 we
obtain

jv�Anuj �
e

���n���

Z



jq��z�j jdzj�

The integral in this formula can be interpreted as the arc length of the image of the circle
& under the rational function q�z�� Now according to a result known as Spijker#s Lemma	�
if q�z� is a rational function of order N 	 the arc length of the image of a circle under q�z�
can be at most ��N times the maximum modulus that q�z� attains on that circle	 which in
this case is at most C�n���� Thus we get

jv�Anuj �
e

���n���
���N�C�n��� � eCN�

This completes the proof of the Kreiss matrix theorem�

We close this section with a 
gure to further illustrate the idea of pseudospectra�
Consider the ����� matrix of the form

A �

�BBBBB�
� � �

� � �
� � �

� � �
� �

�

	CCCCCA � ��������

�Spijker�s Lemma was conjectured in �	�� by LeVeque and Trefethen �BIT  ��
 and proved up to
a factor of 
� The sharp result was proved by Spijker in �		� �BIT  	

� Shortly thereafter it was
pointed out by E� Wegert that the heart of the proof is a simple estimate in integral geometry that
generalizes the famous �Bu�on needle problem� of ����� See Wegert and Trefethen� �From the
Bu�on needle problem to the Kreiss matrix theorem�� Amer� Math� Monthly ��� ��		�
� pp� ��
�
��	�
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whose only eigenvalue is � � �� The upper plot of Figure ����� depicts the boundaries of
the 
�pseudospectra of this matrix for 
 � ���������� � � � ������ Even for 
 � ����	 the 
�
pseudospectrum of this matrix is evidently quite a large set	 covering a heart�shaped region
of the complex plane that extends far from the spectrum f�g� Thus by condition 	ii
 of
the de
nition of the 
�pseudospectrum	 it is evident that the eigenvalues of this matrix are
exceedingly sensitive to perturbations� The lower plot of Figure ����� illustrates this fact
more directly� It shows a superposition of the eigenvalues of ��� matrices A�E	 where
each E is a random matrix of norm kEk� � ����� �The elements of each E are taken as
independent	 normally distributed complex numbers of mean �	 and then the whole matrix is
scaled to achieve this norm�� Thus there are ���� dots in Figure �����b	 which by de
nition
must lie within in second�largest of the curves in Figure �����a�

For further illustrations of matrices with interesting pseudospectra	 see L� N� Trefethen	
�Pseudospectra of matrices	� in D� F� Gri�ths and G� A� Watson	 eds�	 Numerical Analysis
����� Longman	 ����	 pp� ���'����

EXERCISES

� ������ Equivalent de
nitions of the pseudospectrum�

	a
 Prove that conditions 	i
 and 	ii
 on p� ��� are equivalent�

	b
 Prove that another equivalent condition is
	iii
 �u� C

n	 kuk� �	 such that k�A���uk� 
 �

Such a vector u is called an 
�pseudo�eigenvector of A�

	c
 Prove that if k�k� k�k�	 then a further equivalent condition is
	iv
 �N ��I�A�� 
 	

where �N ��I�A� denotes the smallest singular value of �I�A�

� ������ Prove that if A is a normal matrix	 then k�zI�A���k� � ��dist�z�$�A�� for all z � C �
�Hint� if A is normal	 then it can be unitarily diagonalized��

������� ������

	a
 Making use of Figure �����a	 a ruler	 and the Kreiss matrix theorem	 derive lower and
upper bounds as sharp as you can manage for the quantity supn	� kA

nk� for the matrix
A of ���������

	b
 Find the actual actual number with Matlab� How does it compare with your bounds�
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	b
 Eigenvalues of ��� randomly perturbed matrices A�E	 kEk� � �����

Figure ������ Pseudospectra of the ����� matrix A of ���������
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��
� The von Neumann condition

for vector or multistep formulas

Just as x��� followed x���	 Fourier analysis applies to vector or multistep 
nite di
erence
formulas as well as to the scalar one�step case� The determination of stability becomes more
complicated	 however	 because one must estimate norms of powers of matrices�

Consider a linear	 constant�coe�cient 
nite�di
erence formula on a regular grid	 where
the dependent variable is an N �vector� By introducing new variables as necessary	 we may
assume that the formula is written in one�step form vn�� � Skv

n� It may be explicit or
implicit	 provided that in the implicit case	 the solvability condition ������� is satis
ed�

If k�k is the ��norm	 then the condition ������� for stability is equivalent to the condition

kGk�
�nk��C �������

for all 
 � ����h���h� and n�k with � � nk � T � Here Gk�
� denotes the ampli
cation
matrix	 an N�N function of 
	 as described in x���� Stability is thus a question of power�
boundedness of a family of N�N matrices	 a family indexed by the two parameters 
 and
k� This is just the question that was addressed in the last section�

The simplest estimates of the powers kGk�
�nk are based on the norm kGk�
�k or the
spectral radius ��Gk�
��	 that is	 the largest of the moduli of the eigenvalues of Gk�
�� These
two quantities provide a lower and an upper bound on ������� according to the easily proved
inequalities

��Gk�
��n � kGk�
�nk � kGk�
�kn� �������

Combining ������� and ������� yields�

VON NEUMANN CONDITION

FOR VECTOR FINITE DIFFERENCE FORMULAS

Theorem ���
� Let fSkg be a linear� constant�coe�cient 
nite di�erence formula as
described above� Then

�a� ��Gk�
��� ��O�k� is necessary for stability� and �������

�b� kGk�
�k� ��O�k� is su�cient for stability� �������

Both �a� and �b� are assumed to hold as k� �	 uniformly for all 
 � ����h���h��
Condition 	a
 is called the von Neumann condition� For the record	 let us give it a
formal statement�

VON NEUMANN CONDITION� The spectral radius of the ampli
cation matrix
satis
es

��Gk�
�� � ��O�k� �������

as k� �� uniformly for all 
 � ����h���h��
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In summary	 for vector or multistep problems	 the von Neumann condition is a state�
ment about eigenvalues of ampli
cation matrices	 and it is necessary but not su�cient for
stability�

Obviously there is a gap between conditions ������� and �������� To eliminate this
gap one can apply the Kreiss matrix theorem� For any matrix A and constant 
� �	 let
us de
ne the 
�pseudospectral radius ���A� of A to be the largest of the moduli of its

�pseudo�eigenvalues	 that is	

���A� � sup
�����
A�

j��j� �������

From condition 	ii
 of the de
nition of $��A�	 it is easily seen that an equivalent de
nition
is

���A� � sup
kEk
�

��A�E�� �������

Theorem ���� can be restated in terms of the 
�pseudospectral radius as follows� a matrix
A is power�bounded if and only if

���A� � ��O�
� �������

as 
� �� For the purpose of determining stability we need to modify this condition slightly
in recognition of the fact that only powers n with nk�T are of interest� Here is the result�

STABILITY VIA THE KREISS MATRIX THEOREM

Theorem ����� A linear� constant�coe�cient 
nite di�erence formula fSkg is stable in
the ��norm if and only if

���Gk�
�� � ��O�
��O�k� �������

as 
� � and k� ��

The �O� symbols in this theorem are understood to apply uniformly with respect to 
 �
����h���h��

Proof� A more explicit expression of ������� is

j��j � ��C�
�C�k ��������

for all �� in the 
�pseudospectrum $��Gk�
��	 all 
� �	 all k � �	 and all 
 � ����h���h��
Equivalently	

k�zI�G�
����k� �
C

jzj����C�k�
��������

for all jzj� ��C�k� �From here it#s easy to be completed later��

Theorem ���� is a powerful result	 giving a necessary and su�cient condition for sta�
bility of a wide variety of problems	 but it has two limitations� The 
rst is that determining
resolvent norms and pseudospectra is not always an easy matter	 and that is why it is conve�
nient to have Theorem ���� available as well� The second is that not all numerical methods
satisfy the rather narrow requirements of constant coe�cients and regular unbounded grids
that make Fourier analysis applicable� This di�culty will be addressed in the next section�
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Figure ��	��� Boundaries of 
�pseudospectra of the leap frog ampli
cation ma�
trix G�
� with 
 � ��� �
 � ���������� � � � ������� For � � � there is a defective
eigenvalue at z � i	 the condition ���G�
�� � � �O�
� fails	 and the formula is
unstable�

EXAMPLE ��	��� For the leap frog model of ut �ut	 the ampli
cation matrix

G�
� �



�i�sin
h �

� �

�
��������

was derived in Example ������ For � � � this family of matrices is power�bounded	 but
for � � �	 the matrix G����� is defective and not power�bounded� The pseudospectra for
G����� for �� ��� and �� � are illustrated and Figure ������ See Exercise ������

In practice� how do people test for stability of �nite di�erence methods#
Usually� by computing eigenvalues and checking the von Neumann condition�
If it is satis�ed� the method is often stable� but sometimes it is not� It is
probably accurate to say that when instability occurs� the problem is more
often in the boundary conditions or nonlinearities than in the gap between
Theorems ���� and ���� associated with non�normality of the ampli�cation
matrices� In Chapter � we shall discuss additional tests that can be used to
check for instability introduced by boundary conditions�
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EXERCISES

� ������ Multidimensional wave equation� Consider again the second�order wave equation in
d space dimensions

utt � ux�x� � � � ��uxdxd �

and the 
nite di
erence approximation discussed in Exercise ������ Use d�dimensional
Fourier analysis to determine the stability bound on �� �You do not have to use matrices
and do it rigorously	 which would involve an ampli
cation matrix with a defective eigenvalue
under certain conditions just plug in the appropriate Fourier mode solution ��Ansatz�� and
compute ampli
cation factors� You need not worry about keeping track of strong vs� weak
inequalities�� Is it the same as the result of Exercise ������

� ������ Stability of leap frog� Consider the leap frog model of ut � ux with � � k�h �
constant � � �Example ����� and Figure �������

	a
 Compute the eigenvalues and spectral radius of Gk�
�	 and verify that the von Neumann
condition does not reveal leap frog to be unstable�

	b
 Compute the ��norm kGk�
�k	 and verify that the condition �������	 which would guar�
antee that leap frog is stable	 does not hold�

	c
 In fact	 leap frog is stable for � � �� Prove this by any means you wish	 but be sure
that you have shown boundedness of the powers Gk�
� uniformly in 
	 not just for each

 individually� One way to carry out the proof is to argue 
rst that for each 
xed 
	
kGn�
�k�M�
� for all n for an appropriate function M�
�	 and then argue that M�
�
must be bounded as a function of 
� Another method is to compute the eigenvalue
decomposition of G�
��

� ������ The fourth�order leap frog formula� In Table ����� the stability restriction for the
fourth�order leap frog formula is listed as �� ����� � � � � What is this number�

� ������ The DuFort�Frankel formula� The DuFort�Frankel model of ut �uxx	 listed in Table
����� on p� ���	 has some remarkable properties�

	a
 Derive an ampli
cation matrix for this formula� �This was done already in Exercise
�������

	b
 Show that it is unconditionally stable in 	�h�

	c
 What does the result of 	b
	 together with the theorems of this chapter	 imply about
the consistency of the DuFort�Frankel formula with ut � uxx � Be precise	 and state
exactly what theorems you have appealed to�

	d
 By manipulating Taylor series	 derive the precise consistency restriction �involving k
and h� for the DuFort�Frankel formula� Is it is same as the result of 	c
 �
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���� Stability of the method of lines

�This section is not yet written� Most of its results can be found in S� C� Reddy and L� N�
Trefethen	 �Stability of the method of lines	� Numerische Mathematik �� ������	 ���'�����

The Kreiss matrix theorem �Theorem ���� asserts that a family of matrices fA�g is
power�bounded if and only if its 
�pseudospectra $��A�� lie within a distance O�
� of the
unit disk	 or equivalently	 if and only if its resolvent norms k�zI�A����k increase at most
inverse�linearly as z approaches the unit disk D from the outside� If the matrices all have a

xed dimension N 	 then this statement is valid exactly as it stands	 and if the dimensions
N� are variable	 one loses a factor minfN�n��g	 that is	 O�N� or O�n��

The Kreiss matrix theorem has many consequences for stability of numerical methods
for time�dependent PDEs� To apply it to this purpose	 we 
rst make a small modi
cation
so that we can treat stability on a 
nite interval ���T �	 as in x���	 rather than the in
nite
interval ������ All that is involved is to replace O�
� by O�
��O�k�	 as in Theorem �����

It turns out that there are four particularly important consequences of the Kreiss
matrix theorem	 which can be arranged in a two�by�two table according to the following
two binary choices� Theorem ���� was one of these four consequences�

First	 one can work either with the operators fSkg as matrices	 or with the ampli
cation
matrices fGk�
�g� The latter choice is only possible when Fourier analysis is applicable	 i�e�	
under the usual restrictions of constant coe�cients	 regular grids	 no boundaries	 etc� It
has the great advantage that the dimensions of the matrices involved are 
xed	 so there is
no factor O�n� or O�N� to worry about	 and indeed	 Gk�
� is often independent of k� When
Fourier analysis is inapplicable	 however	 one always has the option of working directly with
the matrices fSkg themselves�in �space space� instead of Fourier space� This is customary
for example in the stability analysis of spectral methods on bounded domains�

Thus our 
rst pair of theorems are as follows�

STABILITY

Theorem ���� �again�� A linear� constant�coe�cient 
nite di�erence formula fSkg is
stable in the ��norm if and only if the pseudo�eigenvalues �� �$��Gk�
�� of the ampli
�
cation matrices satisfy

dist����D� � O�
��O�k� �������

STABILITY IN FOURIER SPACE

Theorem ����� A linear 
nite di�erence formula fSkg is stable� up to a factor minfN�n�
�g� if and only if the pseudo�eigenvalues �� �$��Sk� satisfy

dist����D� � O�
��O�k� �������
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In these theorems the order symbols O�
��O�k� should be understood to apply uniformly
for all k and �where appropriate� 
 as k� � and 
� ��

As a practical matter	 the factor minfN�n��g is usually not important	 because most
often the instabilities that cause trouble are exponential� �One derivative of smoothness�
in the initial and forcing data for a time�dependent PDE is generally enough to ensure that
such a factor will not prevent convergence as the mesh is re
ned� In a later draft of the
book this point will be emphasized in Chapter ��

The other pair of theorems comes when we deal with the method of lines	 discussed
previously in x���� Following the standard formulation of the Lax�Richtmyer stability theory
in Chapter �	 suppose we are given an autonomous linear partial di
erential equation

ut � Lu� �������

where u�t� is a function of one or more space variables on a bounded or unbounded domain
and L is a di
erential operator	 independent of t� For each su�ciently small time step k � �	
let a corresponding 
nite or in
nite spatial grid be de
ned and let ������� 
rst be discretized
with respect to the space variables only	 so that it becomes a system of ordinary di
erential
equations	

vt � Lkv� �������

where v�t� is a vector of dimension Nk�� and Lk is a matrix or bounded linear operator�
With the space discretization determined in this way	 let ������� then be discretized with
respect to t by a linear multistep or Runge�Kutta formula with time step k� We assume
that the stability region S is bounded by a cusp�free curve� Then one can show�

STABILITY OF THE METHOD OF LINES

Theorem ����� The method of lines discretization described above is stable� up to a
factor minfN�n��g� if and only if the pseudo�eigenvalues �� �$��kLk� satisfy

dist����S� � O�
��O�k� �������

STABILITY OF THE METHOD OF LINES IN FOURIER SPACE

Theorem ����� A linear� constant�coe�cient method of lines discretization as described
above is stable in the ��norm if and only if the pseudo�eigenvalues �� �$��k"Lk�
�� satisfy

dist����S� � O�
��O�k� �������

When the matrices Sk or Gk�
� or Lk or "Lk�
� appearing in these theorems are normal	
one can simplify the statements by replacing 
�pseudo�eigenvalues by eigenvalues and O�
� by
�� In particular	 for a method of lines calculation in which the space discretization matrices
Lk are normal	 a necessary and su�cient condition for stability is that the eigenvalues of
fkLkg lie within a distance O�k� of the stability region S as k� ��
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Chapter ��

Dissipation� Dispersion� and Group Velocity

���� Dispersion relations

���� Dissipation

���� Dispersion and group velocity

���� Modi�ed equations

���� Stability in �p norms

���� Notes and references

Things fall apart� the center cannot hold�

Mere anarchy is loosed upon the world�
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It would be a �ne thing if discrete models calculated solutions to partial
di	erential equations exactly
 but of course they do not� In fact in general they
could not
 even in principle
 since the solution depends on an in�nite amount
of initial data� Instead
 the best we can hope for is that the errors introduced
by discretization will be small when those initial data are reasonably well�
behaved�

This chapter is devoted to understanding the behavior of numerical errors�
From truncation analysis we may have a bound on the magnitude of discretiza�
tion errors
 depending on the step sizes h and k
 but much more can be said

for the behavior of discretization errors exhibits great regularity
 which can be
quanti�ed by the notions of numerical dissipation and dispersion� Rounding
errors too
 though introduced essentially at random
 propagate in the same
predictable ways�

So long as we can estimate the magnitude of the discretization and round�
ing errors
 what is the point in trying to investigate their behavior in more
detail� There are several answers to this question� One is that it is a good idea
to train the eye
 a practitioner familiar with arti�cial numerical e	ects is less
likely to mistake spurious features of a numerical solution for mathematical or
physical reality� Another is that in certain situations it may be advantageous
to design schemes with special properties�low dissipation
 for example
 or
low dispersion� A third is that in more complicated circumstances
 the mag�
nitude of global errors may depend on the behavior of local errors in ways
that ordinary analysis of discretization and rounding errors cannot predict� In
particular
 we shall see in the next chapter that the stability of boundary con�
ditions for hyperbolic partial di	erential equations depends upon phenomena
of numerical dispersion�

One might say that this chapter is built around an irony
 �nite di	erence
approximations have a more complicated �physics� than the equations they are
designed to simulate� The irony is no paradox
 however
 for �nite di	erences
are used not because the numbers they generate have simple properties
 but
because those numbers are simple to compute�
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���� Dispersion relations

Any time�dependent scalar
 linear partial di	erential equation with con�
stant coe�cients on an unbounded space domain admits plane wave solutions

u�x�t�� ei��x��t�� � �R � �������

where � is the wave number and � is the frequency� �Vector di	erential
equations admit similar modes multiplied by a constant vector� the extension
to multiple space dimensions is described at the end of this section�� For each
�
 not all values of � can be taken in �������� Instead
 the PDE imposes a
relationship between � and �


������� �������

which is known as the dispersion relation
 mentioned already in x���� In
general each wave number � corresponds to m frequencies �
 where m is the
order of the di	erential equation with respect to t
 and that is why ������� is
called a relation rather than a function� For most purposes it is appropriate
to restrict attention to values of � that are real
 in which case � may be real or
complex
 depending on the PDE� The wave ������� decays as t�� if Im �� �

and grows if Im �� ��

For example
 here again are the dispersion relations for the model equa�
tions of x���
 and also for the second�order wave equation


ut� ux 
 �� �� �������

utt� uxx 
 ��� ��� i�e�
 ����� �������

ut� uxx 
 i������ �������

ut� iuxx 
 ������ �������

These relations are plotted in Figure ������ Notice the double�valuedness of
the dispersion relation for utt� uxx
 and the dashed curve indicating complex
values for ut� uxx�

More general solutions to these partial di	erential equations can be ob�
tained by superimposing plane waves �������
 so long as each component sat�
is�es the dispersion relation� the mathematics behind such Fourier synthesis
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� �

� �

�a� ut� ux �b� utt� uxx

� �

i� �

�c� ut� uxx �d� ut� iuxx

Figure ������ Dispersion relations for four model partial di	erential
equations� The dashed curve in �c� is a reminder that � is complex�
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was described in Chapter �
 and examples were given in x���� For a PDE of
�rst order in t
 the result is

u�x�t� �
�

��

Z �

��
ei��x�����t��u����d�� �������

Since most partial di	erential equations of practical importance have variable
coe�cients
 nonlinearity
 or boundary conditions
 it is rare that this integral
representation is exactly applicable
 but it may still provide insight into local
behavior�

Discrete approximations to di	erential equations also admit plane wave
solutions �������
 at least if the grid is uniform
 and so they too have dispersion
relations� To begin with
 let us discretize in x only so as to obtain a semidis�
crete formula� Here are the dispersion relations for the standard centered
semidiscretizations of ���������������


ut� 	�u 
 ��
�

h
sin �h� �������

utt� 	�u 
 ���
�

h�
sin�

�h

�
� �������

ut� 	�u 
 i���
�

h�
sin�

�h

�
� ��������

ut� i	�u 
 ���
�

h�
sin�

�h

�
� ��������

These formulas are obtained by substituting ������� into the �nite di	erence
formulas with x � xj � In keeping with the results of x���
 each dispersion
relation is ��
h�periodic in �
 and it is natural to take � � ���
h��
h� as
a fundamental domain� The dispersion relations are plotted in Figure �����

superimposed upon dotted curves from Figure ����� for comparison�

Stop for a moment to compare the continuous and semidiscrete curves in
Figure ������ In each case the semidiscrete dispersion relation is an accurate
approximation when � is small
 which corresponds to many grid points per

wavelength� �The number of points per spatial wavelength for the wave �������
is ��
�h�� In general
 the dispersion relation for a partial di	erential equation
is a polynomial relation between � and �
 while a discrete model amounts to
a trigonometric approximation� Although other design principles are possible

the standard discrete approximations are chosen so that the trigonometric
function matches the polynomial to as high a degree as possible at the origin
������ To illustrate this idea
 Figure ����� plots dispersion relations for the
standard semidiscrete �nite di	erence approximations to ut� ux and ut� iuxx
of orders �
 �
 and �� The formulas were given in x����
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� �

� �

�a� ut� 	�u �b� utt� 	�u

� �

i� �

�c� ut� 	�u �d� ut� i	�u

Figure ������ Dispersion relations for centered semidiscrete approx�
imations to the four model partial di	erential equations� Each func�
tion is ��
h�periodic in �� the plots show the fundamental domain
� � ���
h��
h��
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�

�

�
�

�

�

�

�

�

�

�a� ut� ux �b� ut� iuxx

Figure ������ Dispersion relations for semidiscrete centered di	er�
ence approximations to ut� ux and ut� iuxx of orders �
 �
 ��

Now let us turn to fully discrete �nite di	erence formulas
 discrete in time
as well as space� The possibilities become numerous� For example
 substituting
the plane wave

vnj � ei��xj��tn� � ei��jh��nk�

into the leap frog approximation of ut� ux yields the dispersion relation

ei�k�e�i�k � ��ei�x�e�i�x��

where �� k
h
 that is

sin �k�� sin�h� ��������

Similarly
 the Crank�Nicolson approximation of ut � uxx has the dispersion
relation

ei�k�� �
��ei�k���

�

h
ei�h���ei�h

i
�

which reduces to

itan
�k

�
� ��� sin�

�h

�
� ��������
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These dispersion relations are ��
h �periodic in � and ��
k �periodic in ��
With the use of inverse trigonometric functions it is possible to solve such
equations for �
 so as to exhibit the functional dependence explicitly
 but the
resulting formulas are less appealing and often harder to work with� Equations
like �������� and �������� have a certain elegance�one sees at a glance that
the time and space derivatives have been replaced by trigonometric analogs�

Tables ����� and ������ consider once again the various �nite di	erence
approximations to ut � ux and ut � uxx that appeared in Tables ����� �����
and ����� ������ In each case the dispersion relation is both listed and plotted�
Since h and k are independent parameters
 there is now a range of possible
plots� we have arbitrarily taken �� k
h���� in the �rst table and �� k
h��
��� in the second� That is why each plot occupies a rectangle of aspect ratio �
in wave number space�y Notice that the multistep �leap frog� formulas contain
two branches of � values�

For partial di	erential equations in several space dimensions
 the notion of
dispersion relation generalizes just as x��� would suggest
 a plane wave takes
the form

u�x�t�� ei���x��t�� � �R � ��������

where � and x are vectors
 and ������� becomes a scalar function �or relation�
of a vector argument� For example
 the wave equation

utt� uxx�uyy
has the dispersion relation

��� ���
�� ��������

if the vector � is written ���
�
 so that the lines of constant � in the ���
�
plane are concentric circles� On the other hand the leap frog approximation

vn��
ij ��vnij�vn��ij � ���vni���j�vni���j�vni�j���vni�j����vnij��

appropriate to a uniform grid with h�!x�!y
 has the dispersion relation

sin�
�k

�
� ��

h
sin�

�h

�
�sin�


h

�

i
� ��������

which is plotted in Figure ����� for �� �� Once again the dispersion relation
is accurate for small wave numbers but diverges dramatically elsewhere�

EXERCISES

� ������ What are the coe�cients as trigonometric functions of the dispersion relations plotted
in Figure �����	

� ������ Sketch the dispersion relation for the leap frog model of ut 
 ux with � � ��say�
�

� How is the instability of this �nite di�erence formula re�ected in your sketch	

�Not yet written�

yanalogous to a Brillouin zone in crystallography �C� Kittel	 Introduction to Solid State Physics�

Wiley	 �
����



��
� DISSIPATION TREFETHEN ���� � ���

BEx � Backward Euler �i���e�i�k��� sin �h

CNx � Crank�Nicolson � tan �k
� �� sin �h

LF � Leap Frog sin �k�� sin �h

BOXx � Box tan �k
� �� tan �h

�

LF� � �th�order Leap Frog sin �k� 

�� sin �h� �

�� sin ��h

LXF � Lax�Friedrichs ei�k �cos �h� i� sin �h

UW � Upwind ei�k�����ei�h���

LW � Lax�Wendro	 �i�ei�k����� sin �h��i�� sin� �h
�

Table ������ Dispersion relations for various �nite di	erence approx�
imations to ut � ux with �� k
h� ���� See Tables ����� and ������
The dashed lines indicate the slope d�
d� at isolated points where �
is real�
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Figure ������ Dispersion relation for the leap frog model of utt �
uxx�uyy in the limit �� �� The region shown is the domain ���
h�

�
h�� of the ���
� plane� The concentric curves are lines of constant
� for �h� �


 �
�
� � � � � �

��

 �

���� Dissipation

Even though a partial di�erential equation may conserve energy in the L� norm� its
�nite di�erence models will often lose energy as t increases� especially in the wave numbers
comparable to the grid size� This property is numerical dissipation� and it is often advan�
tageous� since it tends to combat instability and unwanted oscillations� In fact� arti�cial
dissipation� is often added to otherwise nondissipative formulas to achieve those ends� An
example of this kind appeared in Exercise ��
���

To make the matter quantitative� suppose we have a linear partial di�erential equation
or �nite di�erence approximation that admits waves ������� with � given by a dispersion
relation �����
�� Since � is assumed to be real� it follows that the wave has absolute value

jei��x��t�j
 e�t Im� ���
���

�In computational �uid dynamics one encounters the more dramatic term arti�cial viscosity�
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as a function of t� and thus decays exponentially if Im�� �� By Parseval�s equality� the L�

norm of a superposition of waves ������� is determined by a superposition of such factors�

ku��� t�k 
 �


�

��e�t Im���� �u����
��� ���
�
�

As an extreme case the heat equation ut
uxx� with dispersion relation �
 i��� dissipates
nonzero wave numbers strongly�and indeed it does nothing else� at time t� only wave
numbers � 
O�

p
t� remain with close to their initial amplitudes� But it is principally the

dissipation introduced by �nite di�erence formulas that we are concerned with here�
The following de�nitions are standard�

A �nite di�erence formula is nondissipative if Im�
� for all �� It is dissipative if
Im�� � for all � �
�� It is dissipative of order 
r if � satis�es

Im�k� 	���h�
�r� i�e�� jei�kj � ��	���h�

�r ���
���

for some constants 	j � �� In each of these statements� � varies over the interval
���
h��
h�� and � represents all possible values � corresponding to a given �� For
problems in multiple space dimensions� ��h� is replaced by k�hk in any norm�

For example� the leap frog and Crank�Nicolson models of ut 
 ux are nondissipative�
while the upwind and Lax�Wendro� formulas are dissipative�

Dissipative and nondissipative are mutually exclusive� but not exhaustive� a �nite
di�erence formula can be neither dissipative nor nondissipative� See Exercise ��
���

According to the de�nition� no consistent �nite di�erence approximation of ut
ux�u
could be dissipative� but customary usage would probably use the term dissipative sometimes
for such a problem anyway� One could modify the de�nition to account for this by including
a term O�k� in ���
����

A more serious problem with these standard de�nitions arises in the case of multistep
formulas� for which each � corresponds to several values of �� In such cases the de�nition
of dissipative� for example� should be interpreted as requiring Im�� � for every value of �
that corresponds to some � �
�� The di�culty arises because for multistep formulas� that
condition ensures only that the formula dissipates oscillations in space� not in time� For
example� the leap frog model becomes dissipative if a small term such as k�

�
vn is added

to it� according to our de�nitions� yet the resulting formula still admits the wave �������
with �
�� �
�
h� which is sawtoothed in time� To exclude possibilities of that kind it is
sometimes desirable to use a stronger de�nition�

A �nite di�erence formula is totally dissipative if it is dissipative and in addition�
Im�
� implies �
��

EXERCISES

� ������ Determine whether each of the following models of ut 
 ux is nondissipative� dissi�
pative� or neither� If it is dissipative� determine the order of dissipativity�
�a	 Lax�Wendro�� �b	 Backward Euler� �c	 Fourth�order leap frog� �d	 Box� �e	 Upwind�



���� DISPERSION AND GROUP VELOCITY TREFETHEN ���� � �
�

���� Dispersion and group velocity

�This section is not yet properly written� The next few pages contain a few remarks	 followed by

an extract from my paper �Dispersion	 dissipation	 and stability���

The general idea� Whereas dissipation leads to decay of a wave form� dispersion leads
to its gradual separation into a train of oscillations� This phenomenon is a good deal less
obvious intuitively� for it depends upon constructive and destructive interference of Fourier
components� It is of central importance in �nite di�erence modeling� because although many
partial di�erential equations are nondispersive� their discrete approximations are almost
invariably dispersive� �Spectral methods are an exception��

Caution� Phase and group velocity analysis depend upon the problem being linear and
nondissipative�i�e�� � must be real when � is real� �However� similar predictions hold if
there is a su�ciently slight amount of dissipation��

Phase velocity� Suppose that a PDE or �nite di�erence formula admits a solution
ei��t��x�� It�s then a triviality to see that any individual �wave crest� of this wave� i�e�� a
point moving in such a way that the quantity inside the parentheses has a constant value
�the phase�� moves at the velocity

Phase velocity� c�����
��

�
� �������

Group velocity� However� early in the twentieth century it was realized that wave
energy propagates at a di�erent velocity�

Group velocity� cg�����
�
d�

d�
� �����
�

The algebraic meaning of this expression is that we di�erentiate the dispersion relation with
respect to �� �In a plot in ��� space� c is minus the slope of the line through ����� and
the origin� and cg is minus the slope of the line tangent to the dispersion relation at �������
The physical meaning is that� for example� a wave packet�a smooth envelope times an
oscillatory carrier wave with parameters ������will move approximately at the velocity cg �
The same goes for a wave front and for any other signal that can carry information�

Dispersive vs� nondispersive systems� If the dispersion relation is linear� i�e�� � 

const��� then ������� and �����
� are equal and the system is nondispersive� If the dispersion
relation is nonlinear� the system is dispersive� Finite di�erence formulas are almost always
dispersive� since their dispersion relations are periodic and therefore nonlinear� �However�
see Exercise ����
��

Precise meaning of group velocity� The meaning of group velocity can be made precise
in various asymptotic fashions� for example by considering the limit t��� The mathemat�
ics behind this is usually a stationary phase or steepest descent argument�

Simple explanations of group velocity� There are a number of intuitive ways to under�
stand where the derivative �����
� comes from� One is to superimpose two waves with nearby
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parameters ������� and �������� It is then readily seen that the superposition consists of a
smooth envelope times a carrier wave at frequency �

� ������� and wave number
�
� ��������

and the envelope moves at velocity ��������
���� ���� which approaches �����
� in the
limit ��� ��� ��� ��� Another approach is to take a pure exponential e

i��t��x�� with �
and � real� and change � slightly to a complex value �� i � �in order to visualize which
way the envelope is moving�� If the e�ect on � is to make it change to ��i �� it is readily
calculated that the resulting evanescent wave has an envelope that moves laterally at the
velocity � �
 �� and this again approaches �����
� in the limit  �� ��  �� �� A third�
more �PDE�style� explanation is based upon advection of local wave number according to
a simple hyperbolic equation with coe�cient cg� see Lighthill�

Group velocity in multiple dimensions� If there are several space dimensions� the group
velocity becomes the gradient of � with respect to the vector �� i�e�� cg 
�r���

Phase and group velocities on a grid� There is another sense in which group velocity
has more physical meaning than phase velocity on a �nite di�erence grid� the former is
well�de�ned� but the latter is not� On a periodic grid� any Fourier mode can be represented
in terms of in�nitely many possible choices of � and � that are indistinguishable physically�
and according to �������� each choice gives a di�erent phase velocity� What�s going on here
is that naturally one can�t tell how fast a pure complex exponential wave is moving if one
sees it at only intermittent points in space or time� for one wave crest is indistinguishable
from another� By contrast� the group velocity is well�de�ned� since it depends only on the
slope� which is a local property� formula �����
� has the same periodicity as the dispersion
relation itself�

Computation of a group velocity on a grid� To compute the group velocity for a
�nite di�erence formula� di�erentiate the dispersion relation implicitly and then solve for
cg 
�d�
d�� For example� the wave equation ut
ux has c
 cg
�� for all �� For the leap
frog approximation the dispersion relation is sin�k
 �sin��� which implies k cos�kd�

h� cos��d�� and since k
h�� cg�����
�cos�h
cos�k�

Parasitic waves� Many �nite di�erence formulas admit parasitic waves as solutions� i�e��
waves that are sawtoothed with respect to space or time� These correspond to � 
��
h�
�
��
k� or both� It is common for such waves to have group velocities opposite in sign
to what is correct physically� In the example of the leap frog formula� all four parasitic
modes �� ����j � ����n� and ����j�n are possible� with group velocities ��� �� �� and ���
respectively�

Spurious wiggles near interfaces and boundaries� It is common to observe spurious
wiggles in a �nite di�erence calculation� and they appear most often near boundaries� in�
terfaces� or discontinuities in the solution itself� The explanation of where they appear is
usually a matter of group velocity� Typically a smooth wave has passed through the discon�
tinuity and generated a small re�ected wave of parasitic form� which propagates backwards
into the domain because its group velocity has the wrong sign� More on this in the next
chapter�

Waves in crystals� Dispersion relations for vibrations in crystals are also periodic with
respect to �� As a result� sound waves in crystals exhibit dispersive e�ects much like those
associated with �nite di�erence formulas� including the existence of positive and negative
group velocities�
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Figure ������ Dispersion under the leap frog model of ut
ux with �
���� The
lower mesh is twice as �ne as the upper�
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EXERCISES

� ��
��� The Box formula�

�a	 Write out the BOXx formula of Table ��
�� in terms of v
n
j � v

n
j��� etc�

�b	 Determine the dispersion relation �expressed in as simple a form as possible��

�c	 Sketch the dispersion relation�

�d	 Determine the group velocity as a function of � and ��

� ��
��� Schr�odinger equation�

�a	 Calculate and plot the dispersion relation for the Crank�Nicolson model of ut
 iuxx of
Exercise ��
���f	�

�b	 Calculate the group velocity� How does it compare to the group velocity for the equation
ut
 iuxx itself	

� ��
�
� A paradox� Find the resolution of the following apparent paradox� and be precise in
stating where the mistake is� Draw a sketch of an appropriate dispersion relation to explain
your answer�

One the one hand� if we solve ut 
ux by the leap frog formula with �
�� the results will
be exact� and in particular� no dispersion will take place�

On the other hand� as discussed above� the dispersion relation on any discrete grid must be
periodic� hence nonlinear�and so dispersion must take place after all�
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Chapter ��

Boundary Conditions

���� Examples

���� Scalar hyperbolic equations

���� Systems of hyperbolic equations

���� Absorbing boundary conditions

���� Notes and references

O God� I could be bounded in a nutshell�

and count myself a king of in�nite space�

were it not that I have bad dreams�

� W� SHAKESPEARE� Hamlet II� ii ��	
��
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The di�culties caused by boundary conditions in scienti	c computing
would be hard to overemphasize� Boundary conditions can easily make the
di
erence between a successful and an unsuccessful computation� or between
a fast and a slow one� Yet in many important cases� there is little agreement
about what the proper treatment of the boundary should be�

One of the sources of di�culty is that although some numerical boundary
conditions come from discretizing the boundary conditions for the continuous
problem� other �arti	cial
 or �numerical boundary conditions
 do not� The
reason is that the number of boundary conditions required by a 	nite di
erence
formula depends on its stencil� not on the equation being modeled� Thus even
a complete mathematical understanding of the initial boundary value problem
to be solved�which is often lacking�is in general not enough to ensure a
successful choice of numerical boundary conditions� This situation reaches an
extreme in the design of what are variously known as �open
� �radiation
�
�absorbing
� �non�re�ecting
� or �far�	eld
 boundary conditions� which are
numerical artifacts designed to limit a computational domain in a place where
the mathematical problem has no boundary at all�

Despite these remarks� perhaps the most basic and useful advice one can
o
er concerning numerical boundary conditions is this� before worrying about
discretization� make sure to understand the mathematical problem� If the
IBVP is ill�posed� no amount of numerical cleverness will lead to a successful
computation� This principle may seem too obvious to deserve mention� but it
is surprising how often it is forgotten�

�Only portions of this chapter have been written so far� The preceding typewritten pages from
Chapter �� however� include some of the material that belongs here��
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���� Scalar hyperbolic equations

�This section is not yet properly written� but some of the essential ideas are summarized below��

z and �� The following are standard abbreviations�

vnj � zn�j � ei��x��t�� z� ei�k� �� ei�h� �������

Thus z is the �temporal ampli	cation factor
 and � is the �spatial ampli	ca�
tion factor
 for a wave mode ei��x��t�� We shall often write x and t� as here�
even though the application may involve only their discretizations xj and tn�

History� The four papers listed 	rst in the references for this chapter 	t
the following neat pattern� The ���� paper by Kreiss is the classic reference
on well�posedness of initial boundary value problems� and the ���� paper by
Higdon presents an interpretation of this theory in terms of dispersive wave
propagation� The ���� �GKS
 paper by Gustafsson� Kreiss� and Sundstr�om is
the classic reference on stability of 	nite di
erence models of initial boundary
value problems �although there are additional important references by Strang�
Osher� and others�� and the ���� paper by Trefethen presents the dispersive
waves interpretation for that�

Leftgoing and rightgoing waves� For any real frequency � �i�e�� jzj� ���
a three�point 	nite di
erence formula typically admits two wave numbers �

�i�e�� ��� and often� one will have cg � � and the other cg � �� This is true�
for example� for the leap frog and Crank�Nicolson models of ut� ux� We shall
label these wave numbers �L and �R� for �leftgoing
 and �rightgoing
�

Interactions at boundaries and interfaces� If a plane wave hits a boundary
or interface� then typically a re�ected wave is generated that has the same �

�i�e�� z� but di
erent � �i�e�� ��� The re�ected value � must also satisfy the
	nite di
erence formula for the same �� so for the simple formulas mentioned
above� it will simply be the �other
 value� e�g�� �R at a left�hand boundary�

Re�ection coe�cients� Thus at a boundary it makes sense to look for
single�frequency solutions of the form

vnj � zn��L�
j
L��R�

j
R� � ei�t��Le

i�Lx��Re
i�Rx�� �������

If there is such a solution� then it makes sense to de	ne the re�ection coef�

�cient R��� by

R����
�R
�L

� �������
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Stable and unstable boundary conditions� Very roughly� the GKS theory
asserts that a left�hand boundary condition is stable if and only if it admits
no solutions ������� with �L��� The idea is that such a solution corresponds
to spurious energy radiating into the domain from nowhere� Algebraically�
one checks for stability by checking whether there are any modes ������� that
satisfy three conditions�

��� vnj satis	es the interior 	nite di
erence formula�

��� vnj satis	es the discrete boundary conditions�

�	� vnj is a �rightgoing
 mode� that is� either
�a� jzj� j�j�� and cg� �� or
�b� jzj � �� j�j�

Finite vs� in
nite re�ection coe�cients� If R��� �� for some �� the
boundary condition must be unstable� because that implies �L���� � above�
The converse� however� does not hold� That is� R��� may be 	nite if �R���
and �L��� happen to be zero simultaneously� and this is a situation that comes
up fairly often� A boundary instability tends to be more pronounced if the
associated re�ection coe�cient is in	nite� However� a pronounced instability is
sometimes less dangerous than a weak one� for it is less likely to go undetected�

The e�ect of dissipation� Adding dissipation� or shifting from centered
to one�sided interior or boundary formulas� often makes an unstable model
stable� Theorems to this e
ect can be found in various papers by Goldberg
� Tadmor� see the references� However� dissipation is not a panacea� for if
a slight amount of dissipation is added to an unstable formula� the resulting
formula may be technically stable but still subject to oscillations large enough
to be troublesome�

Hyperbolic problems with two boundaries� A general theorem by Kreiss
shows that in the case of a 	nite di
erence model of a linear hyperbolic system
of equations on an interval such as x � ������ the two�boundary problem is
stable if and only if each of the two boundary conditions is individually stable�

Hyperbolic problems in corners� Analogously� one might expect that if a
hyperbolic system of equations in two space variables x and y is modeled with
stable boundary conditions for x� � and for y � �� then the same problem
would be stable in the quarter�domain x� �� y � �� However� examples by
Osher and Sarason � Smoller show that this is not true in general�
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�a� vn�	

 � vn	 �b� vn�	


 � vn�	
	

Figure ������ Stable and unstable left�hand boundary conditions for
the leap frog model of ut � ux with 	� ���� v � � at the right�hand
boundary� initial data exact�
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EXERCISES


 ������ Interpretation of Figure ������ In Figure ������b�� various waves are evidently prop	
agating back and forth between the two boundaries� In each of the time segments marked
a� b� c� and d� one particular mode 
������ dominates� What are these four modes� Explain
your answer with reference to a sketch of the dispersion relation�


������ ������ Experiments with Crank�Nicolson�

Go back to your program of Exercise 
����� and modify it now to implement CNx�the
Crank	Nicolson model of ut � ux� This is not a method one would use in practice� since
there�s no need for an implicit formula in this hyperbolic case� but there�s no harm in looking
at it as an example�

The computations below should be performed on the interval ����� with h����� and ����
Let f
x� be de�ned by

f
x�� e�����x�����
�

�

and let the boundary conditions at the endpoints be vn��
� � vn��

��h ��� except where otherwise

speci�ed�

�a� Write the down the dispersion relation for CNx model of ut�ux� and sketch it� In the
problems below� you should refer to this sketch repeatedly� Also write down the group
velocity formula�

�b� Plot the computed solutions v
x�t� at time t����� for the initial data v
x����

�i� f
x�� �ii� 
���jf
x�� �iii� Refijf
x�g�

and explain your results� In particular� explain why much more dispersion is apparent
in �iii� than in �i� or �ii��

�c� Plot the computed solutions at time t����� for initial data v
x���� f
x� and left	hand
boundary conditions

�i� vn��
� � vn��

� � �ii� vn��
� � vn� �

�iii� vn��
� � vn��

� � �iv� vn��
� ��vn��

� �vn��
� �vn��

� �

To implement �iv�� you will have to make a small modi�cation in your tridiagonal solver�

�d� Repeat �c� for the initial data v
x���� g
x��maxf����jx����j��g�
�e� On the basis of �c� and �d�� which boundary conditions would you say appear stable�


Remember� stability is what we need for convergence� and for convergence� the error
must decay to zero as k� �� If you are in doubt� try doubling or halving k to see what
the e�ect on the computed solution is��

�f� Prove that boundary condition �i� is stable or unstable 
whichever is correct��

�g� Likewise �ii��

�h� Likewise �iii��

�i� Likewise �iv��
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���� Absorbing boundary conditions

A recurring problem in scienti�c computing is the design of arti�cial boundaries�
How can one limit a domain numerically� to keep the scale of the computation within
reasonable bounds� yet still end up with a solution that approximates the correct result
for an unbounded domain�� For example� in the calculation of the transonic �ow over an
airfoil� what boundary conditions are appropriate at an arti�cial boundary downstream� In
an acoustical scattering problem� what boundary conditions are appropriate at a spherical
arti�cial boundary far away from the scattering object�

Arti�cial boundary conditions designed to achieve this kind of e�ect go by many names�
such as absorbing� nonre�ecting� open� radiation� invisible or far��eld boundary
conditions� Except in special situations� a perfect arti�cial boundary cannot be designed
even in principle� After all� in the exact solution of the problem being modeled� interactions
might occur outside the boundary which then propagate back into the computational domain
at a later time� In practice� however� arti�cial boundaries can often do very well�

� �

�

�

Figure ������ The problem of arti�cial boundaries�

There are three general methods of coping with unbounded domains in numerical
simulations�

�� Stretched grids	 change of variables� By a change of variables� a in�nite
domain can be mapped into a �nite one� which can then be treated by a �nite grid� Of
course the equation being solved changes in the process� A closely related idea is to stay
in the original physical domain� but use a stretched grid that has only �nitely many grid

�Experimentalists have the same problem�how can the walls of a wind tunnel be designed to
in
uence the 
ow as little as possible�
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points� Methods of this kind are appealing� but for most problems they are not the best
approach�


� Sponge layers� Another idea is to surround the region of physical interest by a
layer of grid points in which the same equations are solved� except with an extra dissipation
term added to absorb energy and thereby prevent re�ections� This �sponge layer� might
have a width of� say� � to �� grid points�

�� One�way equations	 matched solutions� A third idea is to devise more sophis	
ticated boundary conditions that allow propagation of energy out of the domain of interest
but not into it� In some situations such a boundary condition can be obtained as a dis	
cretization of a �one	way equation� of some kind� More generally� one can think of matching
the solution in the computational domain to some known outer solution that is valid near
in�nity� and then design boundary conditions analytically that are consistent with the latter�

See� e�g�� papers by H� B� Keller and T� Hagstrom��

Of these three methods� the �rst and second have a good deal in common� Both involve
padding the computational domain by �wasted� points whose only function is to prevent
re�ections� and in both cases� the padding must be handled smoothly if the absorption is
to be successful� This means that a stretched grid should stretch smoothly� and an arti�cial
dissipation term should be turned on smoothly� Consequently the region of padding must be
fairly thick� and hence is potentially expensive� especially in two or three space dimensions�
On the other hand these methods are quite general�

The third idea is quite di�erent and more problem	dependent� When appropriate one	
way boundary conditions can be devised� their e�ect may be dramatic� As a rule of thumb�
perhaps it is safe to say that e�ective one	way boundary conditions can usually be found if
the boundary is far enough out that the physics in that vicinity is close to linear� Otherwise�
some kind of a sponge layer is probably the best idea�

Of course� various combinations of these three ideas have also been considered� See�
for example� S� A� Orszag and M� Israeli� J� Comp� Phys�� �����

The remainder of this section will describe a method for designing one	way boundary
conditions for acoustic wave calculations which was developed by Lindman in ���� 
J� Comp�
Phys�� and by Engquist and Majda in ���� 
Math� Comp�� and ���� 
Comm� Pure 	 Appl�
Math��� Closely related methods were also devised by Bayliss and Turkel in ���� 
Comm�
Pure 	 Appl� Math���

For the second	order wave equation

utt � uxx�uyy� 
������

the dispersion relation for wave modes u
x�y�t�� ei��t��x��y� is ��� ������ or equivalently

����
p
��s��

DISPERSION RELATION
FOR WAVE EQUATION


������

with
s�

�

�
�sin	� ������� 	� ����������� 
����
�

This is the equation of a circle in the �
� � �

� plane corresponding to plane waves propagating

in all directions� The wave with wave numbers �� � has velocity c � cg � 
� �
� �� �

� � �

�cos	��sin	�� where 	 is the angle counterclockwise from the negative x axis� See Figure
������
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�

�a� space �b� Fourier space

Figure ����
� Notation for the one	way wave equation�

o

o o

o*

* *

*

�

�

�� �
s�

�

�

p
��s�

r
s�

Figure ������ The approximation problem� r
s��p��s��

By taking the plus or minus sign in 
������ only� we can restrict attention to leftgoing

j	j � ���� or rightgoing 
j	j � ���� waves� respectively� For de�niteness we shall choose the
former course� which is appropriate to a left	hand boundary� and write

����
p
��s��

DISPERSION RELATION
FOR IDEAL O�W�W�E�


������

See Figure ����� again�
Because of the square root� 
������ is not the dispersion relation of any partial di�eren	

tial equation� but of a pseudodi�erential equation� The idea behind practical one	way wave
equations is to replace the square root by a rational function r
s� of type 
m�n� for some m
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and n� that is� the ratio of a polynomial pm of degree m and a polynomial qn of degree n�

r
s� �
pm
s�

qn
s�
�

Then 
������ becomes

���r
s�
DISPERSION RELATION FOR
APPROXIMATE O�W�W�E�


������

for the same range 
������ of s and 	� See Figure ����
� By clearing denominators� we can
transform 
������ into a polynomial of degree maxfm�n��g in �� �� and �� and this is the
dispersion relation of a true di�erential equation�

The standard choice of the approximation r
s�� rmn
s� is the Pad�e approximant top
��s�� which is de�ned as that rational function of the prescribed type whose Taylor series

at s�� matches the Taylor series of
p
��s� to as high an order as possible� Assuming that

m and n are even� the order will be

rmn
s��
p
��s� � O
sm�n���� 
������

For example� the type 
���� Pad e approximant to
p
��s� is r
s� � �� Taking this

choice in 
������ gives
���� i�e�� ux�ut� 
������

This simple advection equation is thus a suitable low	order absorbing boundary condition
for the wave equation at a left	hand boundary� For a numerical simulation� one would
discretize it by a one	sided �nite di�erence formula� In computations 
������ is much better
than a Neumann or Dirichlet boundary condition at absorbing outgoing waves�

At the next order� the type 
���� Pad e approximant to
p
��s� is r
s�� �� �

�s
�� Taking

this choice in 
������ gives
� � �
�� �

��
������

that is�
�� � ��� �

��
�� i�e�� uxt � utt� �

�uyy� 
������

This boundary condition absorbs waves more e�ectively than 
������� and is the most com	
monly used absorbing boundary condition of the Engquist	Majda type�

As a higher order example� consider the type 
���� Pad e approximant to
p
��s��

r
s� �
�� �

�s
�

�� �
�s

�
�

Then 
������ becomes

�

�
�� �

�

��

��

�
� �

�
�� �

�

��

��

�

or
���� �

���
� � ��� �

���
�� i�e�� uxtt� �

�uxyy � uttt� �
�utyy� 
������

This third	order boundary condition is harder to implement than 
������� but provides ex	
cellent absorption of outgoing waves�
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Why didn�t we look at the Pad e approximation of type 
����� There are two answers�
First� although that approximation is of the the same order of accuracy as the type 
����
approximation� it leads to a boundary condition of order � instead of 
� which is even
harder to implement� Second� that boundary condition turns out to be ill	posed and is thus
useless in any case 
Exercise ������� In general� it can be shown that the Engquist	Majda
boundary conditions are well	posed if and only if m�n or n���that is� for precisely those
approximations r
s� taken from the main diagonal and �rst superdiagonal in the �Pade
table� 
L� N� Trefethen ! L� Halpern� Math� Comp� 
� 
������ pp� �����
���

Figure ������ taken from Engquist and Majda� illustrates the e�ectiveness of their
absorbing boundary conditions�� The upper	left plot 
�A� shows the initial data� a quarter	
circular wave radiating out from the upper	right corner� If the boundaries have Neumann
boundary conditions� the wave re�ects with re�ection coe"cient � at the left	hand boundary

�B� and again at the right	hand boundary 
�C�� Dirichlet boundary conditions are equally
bad� except that the re�ection coe"cient becomes �� 
�D�� Figure �E shows the type 
����
absorbing boundary condition 
������� and the re�ected wave amplitude immediately cuts
to about �#� In Figure �F� with the type 
���� boundary condition 
������� the amplitude
is less than �#�

EXERCISES


 ��
��� Ill�posed absorbing boundary conditions�

�a� What is the type 
���� Pad e approximant r
s� to
p
��s��

�b� Find the coe"cients of the corresponding absorbing boundary condition for a left	hand
boundary�

�c� Show that this boundary condition is ill	posed by �nding a mode u
x�y�t�� ei��t��x��y�

that satis�es both the wave equation and the boundary condition with � �R� Im� 
 ��
Im� � �� Explain why the existence of such a mode implies that the initial boundary
value problem is ill	posed� In a practical computation� would you expect the ill	posed
mode to show up as mild or as explosive�


 ��
��� Absorbing boundary conditions for oblique incidence� Sometimes it is advantageous
to tune an absorbing boundary condition to absorb not waves that are normally incident at
the boundary� but waves at some speci�ed angle 
or angles�� Use this idea to derive absorbing
boundary conditions that are exact for plane waves traveling at ��� in the southwest direction
as they hit a left	hand boundary�

�a� Type 
����� �b� Type 
�����

Don�t worry about rigor or about well	posedness� This problem concerns partial di�erential
equations only� not �nite di�erence approximations�

�This �gure will appear in the published version of this book only with permission�
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Figure ������ Absorbing boundary conditions for utt�uxx�uyy 
from Engquist
! Majda��
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Finite di�erence methods	 like 
nite element methods	 are based on local
representations of functions�usually by low�order polynomials� In contrast	
spectral methods make use of global representations	 usually by high�order
polynomials or Fourier series� Under fortunate circumstances the result is a
degree of accuracy that local methods cannot match� For large�scale compu�
tations	 especially in several space dimensions	 this higher accuracy may be
most important for permitting a coarser mesh	 hence a smaller number of data
values to store and operate upon� It also leads to discrete models with little
or no arti
cial dissipation	 a particularly valuable feature in high Reynolds
number 
uid 
ow calculations	 where the small amount of physical dissipation
may be easily overwhelmed by any dissipation of the numerical kind� Spectral
methods have achieved dramatic successes in this area�

Some of the ideas behind spectral methods have been introduced several
times into numerical analysis� One early proponent was Cornelius Lanczos	 in
the ����s	 who showed the power of Fourier series and Chebyshev polynomials
in a variety of problems where they had not been used before� The emphasis
was on ordinary di�erential equations� Lanczos�s work has been carried on	
especially in Great Britain	 by a number of colleagues such as C� W� Clenshaw�

More recently	 spectral methods were introduced again by Kreiss and
Oliger	 Orszag	 and others in the ����s for the purpose of solving the par�
tial di�erential equations of 
uid mechanics� Increasingly they are becoming
viewed within some 
elds as an equal competitor to the better established

nite di�erence and 
nite element approaches� At present	 however	 they are
less well understood�

Spectral methods fall into various categories	 and one distinction often
made is between �Galerkin	� �tau	� and �collocation� �or �pseudospectral��
spectral methods� In a word	 the 
rst two work with the coe�cients of a global
expansion	 and the latter with its values at points� The discussion in this book
is entirely con
ned to collocation methods	 which are probably used the most
often	 chie
y because they o�er the simplest treatment of nonlinear terms�

Spectral methods are a�ected far more than 
nite di�erence methods by
the presence of boundaries	 which tend to introduce stability problems that are
ill�understood and sometimes highly restrictive as regards time step� Indeed	
di�culties with boundaries	 direct and indirect	 are probably the primary rea�
son why spectral methods have not replaced their lower�accuracy competition
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in most applications� Chapter � considers spectral methods with boundaries	
but the present chapter assumes that there are none� This means that the spa�
tial domain is either in
nite�a theoretical device	 not applicable in practice�
or periodic� In those cases where the physical problem naturally inhabits a
periodic domain	 spectral methods may be strikingly successful� Conspicuous
examples are the global circulation models used by meteorologists� Limited�
area meteorological codes	 since they require boundaries	 are often based on

nite di�erence formulas	 but as of this writing almost all of the global circula�
tion codes in use� which model 
ow in the atmosphere of the entire spherical
earth� are spectral�
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���� An example

Spectral methods have been most dramatically successful in problems with
periodic geometries� In this section we present two examples of this kind that
involve elastic wave propagation� Both are taken from B� Fornberg	 �The
pseudospectral method� comparisons with 
nite di�erences for the elastic wave
equation	� Geophysics �� ������	 �������� Details and additional examples
can be found in that paper��

Elastic waves are waves in an elastic medium such as an iron bar	 a build�
ing	 or the earth	 and they come in two varieties� �P� waves �pressure or
primary�	 characterized by longitudinal vibrations	 and �S� waves �shear or
secondary�	 characterized by transverse vibrations� The partial di�erential
equations of elasticity can be written in various forms	 such as a system of
two second�order equations involving displacements� For his numerical simu�
lations	 Fornberg chose a formulation as a system of 
ve 
rst�order equations�

Figures ����� and ����� show the results of calculations for two physical
problems� In the 
rst	 a P wave propagates uninterruptedly through a periodic	
uniform medium� In the second	 an oblique P wave oriented at ��� hits a
horizontal interface at which the wave speeds abruptly cut in half� The result
is re
ected and transmitted P and S waves� For this latter example	 the actual
computation was performed on a domain of twice the size shown � which is
a hint of the trouble one may be willing to go to	 with spectral methods	 to
avoid coping explicitly with boundaries�

The 
gures show that spectral methods may sometimes decisively outper�
form second�order and fourth�order 
nite di�erence methods� In particular	
spectral methods are nondispersive� and in a wave calculation	 that property
can be of great importance� In these examples the accuracy achieved by the
spectral calculation on a ����� grid is not matched by fourth�order 
nite dif�
ferences on a ������� grid	 or by second�order 
nite di�erences on a �������
grid� The corresponding di�erences in work and storage are enormous�

Fornberg picked his examples carefully� spectral methods do not always
perform so convincingly� Nevertheless	 sometimes they are extremely impres�
sive� Although the reasons are not fully understood	 their advantages often
hold not just for problems involving smooth functions	 but even in the presence
of discontinuities�

�The �gures in this section will appear in the published version of this book only with permission�
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�a� Schematic initial and end states

�b� Computational results

Figure ������ Spectral and 
nite di�erence simulations of a P wave
propagating through a uniform medium �from Fornberg	 ������
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�a� Schematic initial and end states

�b� Computational results

Figure ������ Spectral and 
nite di�erence simulations of a P wave
incident obliquely upon an interface �from Fornberg	 ������
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���� Unbounded grids

We shall begin our study of spectral methods by looking at an in
nite	 un�
bounded domain� Of course	 real computations are not carried out on in
nite
domains	 but this simpli
ed problem contains many of the essential features
of more practical spectral methods�

Consider again ��h	 the set of square�integrable functions v� fvjg on the
unbounded regular grid hZ� As mentioned already in x���	 the foundation
of spectral methods is the spectral di�erentiation operator D � ��h � ��h	
which can be described in several equivalent ways� One is by means of the
Fourier transform�

SPECTRAL DIFFERENTIATION BY THE SEMIDISCRETE FOURIER TRANS�

��� Compute �v����

��� Multiply by i��

��� Inverse transform�

Dv�F��
h �i�Fh�v��� �������

Another is in terms of band�limited interpolation� As described in x���	
one can think of the interpolant as a Fourier integral of band�limited complex
exponentials or	 equivalently	 as an in
nite series of sinc functions�

SPECTRAL DIFFERENTIATION BY SINC FUNCTION INTERPOLATION�

��� Interpolate v by a sum of sinc functions q�x��
P
�

k��� vkSh�x�xk��

��� Di	erentiate the interpolant at the grid points xj �

�Dv�j � q��xj� �������

Recall that the sinc function Sh�x�	 de
ned by

Sh�x��
sin��x�h�

�x�h
� �������
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is the unique function in L� that interpolates the discrete delta function ej 	

ej �

�
� j��	

� j ���	
�������

and that moreover is band�limited in the sense that its Fourier transform has
compact support contained in ����h���h��

For higher order spectral di�erentiation	 we multiply Fh�v� by higher
powers of i�	 or equivalently	 di�erentiate q�x� more than once�

Why are these two descriptions equivalent The fundamental reason is
that Sh�x� is not just any interpolant to the delta function e	 but the band�

limited interpolant� For a precise argument	 note that both processes are
obviously linear	 and it is not hard to see that both are shift�invariant in the
sense that D�Kmv� �KmDv for any m� �The shift operator K was de
ned
in ��������� Since an arbitrary function v � ��h can be written as a convolution
sum vj �

P
�

k���vkej�k	 it follows that it is enough to prove that the two
processes give the same result when applied to the particular function e� That
equivalence results from the fact that the Fourier transform of e is the constant
function h	 whose inverse Fourier transform is in turn precisely Sh�x��

Since spectral di�erentiation constitutes a linear operation on ��h	 it can
also be viewed as multiplication by a biin
nite Toeplitz matrix�

D �
	

h

�BBBBBBBBBBBBBBBBBBBB�

� � �

� � � ��
�

�
� �� � � ��

�
�
� � � �

� � �

�CCCCCCCCCCCCCCCCCCCCA

� �������

As discussed in x���	 this matrix is the limit of banded Toeplitz matrices
corresponding to 
nite di�erence di�erentiation operators of increasing orders
of accuracy� see Table ����� on p� ���� �In this chapter we drop the subscript
on the symbol D

�
used in x����� We shall be careless in this text about

the distinction between the operator D and the matrix D that represents it�
Another way to express the same thing is to write

Dv� a�v� a �
�

h�
� � � � �

� �
�
� � � �� �

� �
�
� � � � � �������
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Figure ������ The sinc function Sh�x� and its derivative �Sh�x�x��

as in ���������
The coe�cients of ��������������� can be derived from either the Fourier

transform or the sinc function interpretation� Let us begin with the latter�
The sinc function has derivative

�Sh�x�x� �
cos��x�h�

x
�

sin��x�h�

�x��h
� �������

with values

�Sh�x�xj� �

����	
� if j��	

���	j

jh if j ���
�������

at the grid points� See Figure ������ This is precisely the �zeroth column�
of D	 since that column must by de
nition contain the values on the grid of
the spectral derivative of the delta function�� The other columns	 correspond�
ing to delta functions centered at other points xj 	 contain the same entries
appropriately shifted�

Now let us rederive ��������������� by means of the Fourier transform� If

Dv � a� v	 then dDv��� � �a����v���	 and for spectral di�erentiation we want
�a���� i�� Therefore by the inverse semidiscrete Fourier transform �������	

aj �
�

��

Z ��h

���h
i�ei�jhd��

For j �� the integral is �	 giving a
 ��	 while for j ���	 integration by parts

�Think about this� Make sure you understand why ������	 represents a column rather than a row of
D�
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yields

aj �
�

��
i�

ei�jh

ijh







��h

���h

�
�

��

Z ��h

���h

iei�jh

ijh
d��

The integral here is again zero	 since the integrand is a periodic exponential	
and what remains is

aj �
�

��jh

�
�

h
ei�j���

�

h
�e�i�j

�

�
�

�jh�
�ei�j!e�i�j��

����j

jh�
�

�������

as in ��������
The entries of D are suggestive of the Taylor expansion of log��!x�	 and

this is not a coincidence� In the notation of the spatial shift operator K of
�������	 D can be written

D �
	

h
�K� �

�K
�! �

�K
���� ���

	

h
�K��� �

�K
��! �

�K
����� ���

which corresponds formally to

D �
	

h
log��!K��

	

h
log��!K���

�
	

h
log
�

�!K

�!K��

�
�

	

h
logK�

��������

Therefore formally	 ehD �K	 and this makes sense� by integrating the deriva�
tive over a distance h	 one gets a shift� See the proof of Theorem ����

If vj � ei�jh for some � � ����h���h�	 then Dv � i�v� Therefore i� is an
eigenvalue of the operator D�� On the other hand	 if v has the same form with
� �� ����h���h�	 then � will be indistinguishable on the grid from some alias
wave number �� � ����h���h� with ��� �!����h for some integer �	 and the
result will be Dv� i��v� In other words in Fourier space	 the spatial di�eren�
tiation operator becomes multiplication by a periodic function	 thanks to the
discrete grid	 and in this sense is only an approximation to the exact di�er�
entiation operator for continuous functions� Figure ����� shows the situation
graphically� For band�limited data	 however	 the spectral di�erentiation op�
erator is exact	 in contrast to 
nite di�erence di�erentiation operators	 which
are exact only in the limit �� � �dashed line in the Figure��

�Actually
 this is not quite true� by de�nition
 an eigenvector must belong to ��
 and ei�jh does not�
Strictly speaking
 i� is in the spectrum of D but is not an eigenvalue� However
 this technicality is
unimportant for our purposes
 and will be ignored in the present draft of this book�
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�
����h ���h ��h ���h

�

i
�eigenvalue

Figure ������ Eigenvalue of D �divided by i� corresponding to the
eigenfunction ei�x	 as a function of �� The dashed line shows corre�
sponding eigenvalues for the 
nite di�erence operator D��

�i�h

��i�h

i�h

�i�h

C C

�a� D� �
nite di�erence� �b� D �spectral�

Figure ������ Eigenvalues of 
nite di�erence and spectral 
rst�order
di�erentiation matrices	 as subsets of the complex plane�

Figure ����� compares the spectrum of D to that of the second�order 
nite
di�erence operator D�� �
 of x����

D is a bounded linear operator on ��h	 with norm

kDk � max
������h���h�

ji�j �
�

h
��������

�see xx���	����� Notice that the norm increases to in
nity as the mesh is re
ned�
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This is inevitable	 as the di�erentiation operator for continuous functions is
unbounded�

So far we have described the spectral approximation to the 
rst derivative
operator 	�	x	 but it is an easy matter to approximate higher derivatives too�
For the second derivative	 the coe�cients turn out to be

D� �
�

h�

�BBBBBBBBBBBBBBBBBBBB�

� � �

� � � �
� ��

�
�
� ���

�
�
� ��

�
�
� � � �

� � �

�CCCCCCCCCCCCCCCCCCCCA

� ��������

To derive the entries of this matrix	 one can simply square D� this leads to
in
nite series to be summed� One can di�erentiate ������� a second time� Or
one can compute the inverse Fourier transform of �a�������	 as follows� Two
integrations by parts are involved	 and terms that are zero have been dropped�
For j ���	

aj �
�

��

Z ��h

���h
���ei�jhd�

�
�

��

Z ��h

���h
��

ei�jh

ijh
d�

�
�

�

ei�jh

�ijh��







��h

���h

� �
eij�!e�ij�

j�h�
�

�����j��

j�h�
�

��������

For j�� the integral is simply

a
 � �
�

��
�
���

�h�
� � �

��

�h�
�

The e�ect of D� on a function vj � ei�jh is to multiply it by the square
of the factor associated with D	 as illustrated in Figure ������ Again one has
a periodic multiplier that is exactly correct for � � ����h���h�� The dashed
line shows the analogous curve for the standard centered three�point 
nite
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�
����h ���h ��h ���h

eigenvalue

Figure ������ Eigenvalue of D� corresponding to the eigenfunction
ei�x	 as a function of �� The dashed line shows corresponding eigen�
values for the 
nite di�erence operator �

�
�

����h����h�

C C

�a� �
�

�
nite di�erence� �b� D� �spectral�

Figure ����	� Eigenvalues of 
nite di�erence and spectral second�
order di�erentiation matrices	 as subsets of the complex plane�

di�erence operator �
�

of x���� The spectrum of D� must be real	 since D is
symmetric� it is the interval �����h�����

The developments of this section are summarized	 and generalized to the
mth�order case	 in the following theorem�
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SPECTRAL DIFFERENTIATION ON AN UNBOUNDED REGULAR GRID

Theorem ���� The mth
order spectral di	erentiation operator Dm is a
bounded linear operator on ��h with norm

kDmk��
�

h
�m� ��������

If m is odd� Dm has the imaginary spectrum ��i���h�m� i���h�m� and can
be represented by an in�nite skew
symmetric Toeplitz matrix with entries

a
��� aj � h�m�  � for j ���� ��������

If m is even� Dm has the real spectrum ����m��� ������h�m� and can be
represented by an in�nite symmetric Toeplitz matrix with entries

a
�  � aj � h�m�  � for j ���� ��������

The purpose of all of these spectral di�erentiation matrices is to solve
partial di�erential equations� In a spectral collocation computation this is
done in the most straightforward way possible� one discretizes the continuous
problem as usual and integrates forward in time by a discrete formula	 usually
by 
nite di�erences�� Spatial derivatives are approximated by the matrix
D� This same prescription holds regardless of whether the partial di�erential
equation has variable coe�cients or nonlinear terms� For example	 to solve
ut� a�x�ux by spectral collocation	 one approximates a�x�ux at each time step
by a�xj�Dv� For ut � �u��x	 one uses D�v��	 where v� denotes the pointwise

square �v��i � �vi�
�� �Alternative discretizations may also be used for better

stability properties� see����� This is in contrast to Galerkin or tau spectral
methods	 in which one adjusts the coe�cients in the Fourier expansion of v to
satisfy the partial di�erential equation globally�

�Spectral approximations with respect to time can also sometimes be used� see H� Tal�Ezer
 �Spectral
methods in time for hyperbolic equations
� SIAM J� Numer� Anal� �� �����	
 pp� ������
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EXERCISES


 ������ Coe�cients of D�� Determine the matrix coe	cients of the third
order spectral
di�erentiation matrix D�� Compare your result with the coe	cients of Table ������


 ������

�a� Compute the integral
R
�

��
Sh�x
dx of the sinc function ������
� One could do this by

complex contour integration� but instead� be cleverer than that and �nd the answer
by considering the Fourier transform� The argument is quite easy� be sure to state it
precisely�

�b� By considering the trapezoid rule for integration �Exercise �����
� explain why the
answer above had to come out as it did� �Hint	 what is the integral of a constant
function�
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���� Periodic grids

To be implemented in practice� a spectral method requires a bounded domain� In this
section we consider the case of a periodic domain�or equivalently� an unbounded domain
on which we permit only functions with a �xed periodicity� The underlying mathematics
of discrete Fourier transforms was described in x���� The next chapter will deal with more
general bounded problems�

o o o o o o o o o* * * * * * * * * o o o o o o o o o* * * * * * * * *x �
�h

�
�

N
�

��N
� ���� �N

�

� N
�x

�
N
�

��� x��� xN
�

��

Figure ������ Space and wave number domains for the discrete Fourier trans

form�

To repeat some of the material of x���� our fundamental spatial domain will now be
�����
� as illustrated in Figure ������ Let N be a positive even integer� set

h�
��

N
�N even
� ������


and de�ne xj � jh for any j� The grid points in the fundamental domain are

x
�N������ � � � � x���� � � � � xN�������h�

and the �invaluable identity� is this�
N

�
�
�

h
� ������


The �
norm k�k and space ��N were de�ned in x���� as was the discrete Fourier transform�

�v� ��FNv
� �h

N����X
j��N��

e�i�jhvj � ������


the inverse discrete Fourier transform�

vj ��F
��
N �v
j �

�

��

N����X
���N��

ei�jh�v� � ������


and the discrete convolution�

�v�w
k �h

N����X
j��N��

vk�jwj � ������
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Recall that since the spatial domain is periodic� the set of wave numbers � is discrete�
namely the set of integers Z�and this is why we have chosen to use � itself as a subscript
in ������
 and ������
� We take � ��N��� � � � �N���� as our fundamental wave number
domain� The properties of the discrete Fourier transform were summarized in Theorems ���
and ����� recall in particular the convolution formula

�dv�w
� ��v� �w� � ������


As was described in x���� the discrete Fourier transform can be computed with great
e	ciency by the fast Fourier transform �FFT
 algorithm� for which a program was given on
p� ���� The discovery of the FFT in ���� was an impetus to the development of spectral
methods for partial di�erential equations in the �����s� Curiously� however� practical imple

mentations of spectral methods do not always make use of the FFT� but instead sometimes
perform an explicit matrix multiplication� The reason is that in large
scale computations�
which typically involve two or three space dimensions� the grid in each dimension may have
as few as �� or �� points� or even fewer in so
called �spectral element� computations� and
these numbers are low enough that the costs of an FFT and of a matrix multiplication may
be roughly comparable�

Now we are ready to investigate DN � �
�
N � ��N � the spectral di�erentiation operator

for N 
periodic functions� As usual� DN can be described in various ways� One is by means
of the discrete Fourier transform�

SPECTRAL DIFFERENTIATION BY THE DISCRETE FOURIER TRANSFORM�

��
 Compute �v�


��
 Multiply by i�� except that �v
�N�� is multiplied by ��

��
 Inverse transform	

DNv�F
��
N � � for ���N��� i��v� otherwise 
� ������


The special treatment of the value �v
�N�� is required to maintain symmetry� and appears

only in spectral di�erentiation of odd order�
Another is in terms of interpolation by a �nite series of complex exponentials or�

equivalently� periodic sinc functions�

PERIODIC SPECTRAL DIFFERENTIATION BY SINC INTERPOLATION�

��
 Interpolate v by a sum of periodic sinc functions

q�x
�

N����X
k��N��

vkSN �x�xk
�

��
 Di�erentiate the interpolant at the grid points xj 	

�DNv
j � q��xj
� ������
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In the second description we have made use of the periodic sinc function on the N 
point
grid�

SN �x
�
sin �x

h
��
h tan

x
�

� �������


which is the unique ��
periodic function in L� that interpolates the discrete delta function
ej on the grid�

ej �



� j���

� j��N��� � � � ������ � � � �N�����
�������


and which is band
limited in the sense that its Fourier transform has compact support
contained in ����h���h� �and furthermore satis�es �v

�N����vN��
� Compare ������
�
For higher order spectral di�erentiation on the periodic grid� we multiply �v� by higher

powers of i�� or equivalently� di�erentiate q�x
 more than once� If the order of di�erentiation
is odd� �v

�N�� is multiplied by the special value � to maintain symmetry�
As in the last section� the spectral di�erentiation process can be viewed as multiplica


tion by a skew
symmetric Toeplitz matrix DN �compare ������

�
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DN �

�BBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

� �
� cot

h
� � �

� cot
�h
� � �

� cot
h
�

� � �

�
� cot

�h
� � �

� cot
h
� � �

� cot
h
� � �

� cot
�h
�

� � �

�
� cot

h
�

�
� cot

�h
� � �

� cot
h
� �

�CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

� �������


In contrast to the matrix D of ������
� DN is �nite� it applies to vectors �v�N��� � � � �vN����
�
and has dimension N �N � DN is not only a Toeplitz matrix� but is in fact circulant�
This means that its entries �DN 
ij �wrap around�� depending not merely on i� j but on
�i�j
�modN
��

As in the last section� the entries of �������
 can be derived either by the inverse discrete
Fourier transform or by di�erentiating a sinc function� The latter approach is illustrated in
Figure ������ which shows SN and S�N for N ���� Since N is even� symmetry implies that
S�N �x
� � for x��� as well as for x��� Di�erentiation yields

S�N �x
�
cos �xh
�tan x

�

�
sin �x

h
��
h sin

� x
�

� �������


and at the grid points the values are

S�N �xj
�

��	
� if j���

�
� ���


j cot jh� if j ����
�������


Notice that for jjhj � �� these values are approximately the same as in ������
� Thus the
�i� j
 entry of DN � as indicated in �������
� is

�DN 
ij �

��	
� if i� j�

�
� ���


i�j cot�
xi�xj

� 
 if i �� j�
�������


�Any circulant matrix describes a convolution on a periodic grid
 and is equivalent to a pointwise
multiplication in Fourier space� In the case of DN 
 that multiplication happens to be by the function
i��
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Figure ������ The periodic sinc function SN �x
 and its derivative S
�

N �x
�

To derive �������
 by the Fourier transform� one can make use of �summation by parts��
the discrete analog of integration by parts� See Exercise ������

The eigenvectors of DN are the vectors ei�x with � 	Z� and the eigenvalues are the
quantities i� with �N�� �
 �
N������ These are precisely the factors i� in the de�nition
ofDN by the Fourier transform formula ������
� The number � is actually a double eigenvalue
of DN � corresponding to two distinct eigenvectors� the constant function and the sawtooth�

What about the spectral di�erentiation operator of second order� Again there are
various ways to describe it� This time� because ��� is an even function� no special treatment
of ���N�� is required to preserve symmetry in the Fourier transform description�

��
 Compute �v� �

��
 Multiply by ����

��
 Inverse transform�

D
��	
N v�F ��

N �����v�
� �������


The sinc interpolation description follows the usual pattern�

��
 Interpolate v by a sum of periodic sinc functions

q�x
�

N����X
k��N��

vkSN �x�xk
�

��
 Di�erentiate the interpolant twice at the grid points xj �

�D
��	
N v
j � q���xj
� �������


The matrix looks like this �compare �������

�

�Now that DN is �nite
 they are truly eigenvalues� there are no technicalities to worry about as in
the footnote on p� ����
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D
��	
N �

�BBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

� ��

�h��
�



�
�csc

� h
� � �

�csc
� �h
�

�
�csc

� h
�

� � �

� �
�csc

� �h
�

�
�csc

� h
� � ��

�h��
�



�
�csc

� h
� � �

�csc
� �h
�

� � �

�
�csc

� h
� � �

�csc
� �h
�

�
�csc

� h
� � ��

�h��
�



�CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
�������


Note that because � ��N�� has been treated di�erently in the two cases� D
��	
N is not the

square of DN � which is why we have put the superscript in parentheses� In general� the

mth
order spectral di�erentiation operator can be written as a power of D
��	
N if m is even�

and as a power of DN �or as DN times a power of D
��	
N 
 if m is odd� See Exercise ������

Figures �����!����� are the analogs of Figures �����!����� for a periodic grid�
We summarize and generalize the developments of this section in the following theorem�
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SPECTRAL DIFFERENTIATION ON A PERIODIC GRID

Theorem ���� Let N be even� Ifm is odd� themth
order spectral di�erentiation matrix

D
�m	
N is a skew
symmetric matrix with entries

a���� aj �� � 
 for j ���� �������


eigenvalues ��i��h ��

m� i��h ��


m�� and norm

kD
�m	
N k�

��
h
��
�m

� �������


If m is even� D
�m	
N is a symmetric matrix with entries

a�� � � aj �� � 
 for j ���� �������


eigenvalues ���
m��� �����h 

m�� and norm

kD
�m	
N k�

��
h

�m
� �������
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Figure ������ Eigenvalues of �nite di�erence and spectral �rst
order di�erenti

ation matrices on a periodic grid� as subsets of the complex plane� for N ����
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Figure ����
� Eigenvalues of second
order �nite di�erence and spectral di�eren

tiation matrices on a periodic grid� as subsets of the complex plane� for N ����
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EXERCISES


 ������ Fourier transform derivation of DN � �Not yet written��


 ������ D
��	
N ��D�

N � For most values ofN � the matrixD
�
N would serve as quite a good discrete

second
order di�erentiation operator� but as mentioned in the text� it is not identical toD
��	
N �

�a� Determine DN � D
�
N � and D

��	
N for N ��� and con�rm that the latter two are not equal�

�b� Explain the result of �a� by considering sinc interpolation as in Figure ������

�c� Explain it again by considering Fourier transforms as in Figure ����� and ������

�d� Give an exact formula for the eigenvalues of D
�J	
N for arbitrary J � ��


������ ������ Spectral di�erentiation�

Making use of a program for computing the FFT �in Matlab such a program is built
in� in
Fortran one can use the program of p� ���
� write a program DERIV that computes the
mth
order spectral derivative of an N 
point data sequence v representing a function de�ned
on ������ or �������

N � length of sequence �power of �
 �input

m� order of derivative �integer � �
 �input

v� sequence to be di�erentiated �real sequence of length N
 �input

w� mth spectral derivative of v �real sequence of length N
 �output


Although a general FFT code deals with complex sequences� make v and w real variables
in your program� since most applications concern real variables� Allow m to be any integer
m� �� and make sure to treat the distinction properly between even and odd values of m�

Test DERIV with N ��� and N ��� on the functions

u��x
� exp�sin�x
 and u��x
� jsin xj
�

for the values m����� and hand in two ��� tables�one for each function�of the resulting
errors in the discrete �
norm� Put a star � where appropriate� and explain your results�
Plot the computed derivatives with m���


������ ������ Spectral integration� Modify DERIV to accept negative as well as positive values of
m� For m	 �� DERIV should return a scalar representing the de�nite integral of v over one
period� together with a function w representing the jmjth inde�nite integral� Explore the
behavior of DERIV with various v and m	 ��


������ ������ Hamming window� Write a program FILTER that takes a sequence v and smooths
it by transforming to �v� multiplying the transform by the �Hamming window��

�wk ������ ����cos
��k

N

�vk�

and inverse transforming� Apply FILTER to the function jsin xj and hand in a plot of the
result�
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 ������ Fourier transform derivation of DN � �Not yet written��


 ������ D
��	
N ��D�

N � For most values ofN � the matrixD
�
N would serve as quite a good discrete

second
order di�erentiation operator� but as mentioned in the text� it is not identical toD
��	
N �

�a�Determine DN � D
�
N � and D

��	
N for N ��� and con�rm that the latter two are not equal�

�b�Explain the result of �a�by considering sinc interpolation as in Figure ������

�c�Explain it again by considering Fourier transforms as in Figures ����� and ������


������ ������ Spectral di�erentiation� Type the program FFT of Figure ����� into your computer
and experiment with it until you are con�dent you understand how to compute both a
discrete Fourier transform and an inverse discrete Fourier transform� For example� try as
input a sine wave and a sinc function� and make sure the output you get is what you expect�
Then make sure you can get the input back again by inversion�

Making use of FFT� write a program DERIV�N �m�v�w
 which returns the mth
order spec

tral derivative of the N 
point data sequence v representing a function de�ned on ������ or
�������

N � length of sequence �power of �
 �input

m� order of derivative �integer � �
 �input

v� sequence to be di�erentiated �real sequence of length N
 �input

w� mth spectral derivative of v �real sequence of length N
 �output


Although FFT deals with complex sequences� make v and w real variables in your program�
since most applications concern real variables� Allow m to be any integer m� �� and make
sure to treat the distinction properly between even and odd values of m�

Test DERIV with N ��� and N ��� on the functions

u��x
� exp�sin
�x
 and u��x
� jsin xj

�

for the values m����� and hand in two ��� tables�one for each function�of the result

ing errors in the discrete �
norm� Explain your results� If possible� plot the computed
derivatives with m���


������ ������ Spectral integration� Modify DERIV to accept negative as well as positive values of
m� For m	 �� DERIV should return a scalar representing the de�nite integral of v over one
period� together with a function w representing the jmjth inde�nite integral� Explore the
behavior of DERIV with various v and m	 ��


������ ������ Hamming window� Write a program FILTER�N �v�w
 which takes a sequence v and
smooths it by transforming to �v� multiplying the transform by the �Hamming window��

�wk ����� ���cos
��k

N

�vk �

and inverse transforming� Apply FILTER to the function jsin xj and hand in the result� A
plot would be nice�
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���� Stability

�Just a few results so far� The �nished section will be more substantial��

Spectral methods are commonly applied to time
dependent problems according to the
�method of lines� prescription of x���� �rst the problem is discretized with respect to space�
and then the resulting system of ordinary di�erential equations is solved by a �nite di�erence
method in time� As usual� we can investigate the eigenvalue stability of this process by
examining under what conditions the eigenvalues of the spectral di�erentiation operator are
contained in the stability region of the time discretization formula� The separate question of
stability in the sense of the Lax Equivalence Theorem is rather di�erent� and involves some
subtleties that were not present with �nite di�erence methods� these issues are deferred to
the next section�

In xx������� we have introduced two families of spectral di�erentiation matrices� D and

its powers Dm for an in�nite grid� and DN and its higher
order analogs D
�m	
N �not exactly

powers
 for a periodic grid� The spectra of all of these matrices lie in the closed left half of
the complex plane� and that is the same region that comes up in the de�nition of A
stability�
We conclude that if any equation

ut�

mu


xm
������


is modeled on a regular grid by spectral di�erentiation in space and an A
stable formula in
time� the result is eigenvalue stable� regardless of the time step�

By Theorem ����� an A
stable linear multistep formula must be implicit� For a model
problem as simple as ������
� the system of equations involved in the implicit formula can be
solved quickly by the FFT� but in more realistic problems this is often not true� Since spec

tral di�erentiation matrices are dense �unlike �nite di�erence di�erentiation matrices
� the
implementation of implicit formulas can be a formidable problem� Therefore it is desirable
to look for explicit alternatives�

On a regular grid� satisfactory explicit alternatives exist� For example� suppose we
solve ut� ux by spectral di�erentiation in space and the midpoint formula ������
 in time�
The stability region for the midpoint formula is the complex interval ��i�k�i�k�� From
Theorem ��� or Figure ������ we conclude that the time
stability restriction is ��h
 ��k�
i�e�

k

h

�
� ������


This is stricter by a factor � than the time
stability restriction k 
 h for the leap frog
formula� which is based on second
order �nite di�erence di�erentiation� The explanation
goes back to the fact that the sawtooth curve in Figure ����� is � times taller than the
dashed one�

On a periodic grid� Theorem ��� or Figure ����� loosens ������
 slightly to

k 

h

��h
�

�

N��
� ������


Other explicit time
discretization formulas can also be used with ut � ux� so long as
their stability regions include a neighborhood of the imaginary axis near the origin� Figure
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����� reveals that this is true� for example� for the Adams
Bashforth formulas of orders �!��
The answer to Exercise ������b
 can readily be converted to the exact stability bound for
the �rd
order Adams
Bashforth discretization�

For ut � uxx� the eigenvalues of D or DN become real and negative� so we need a
stability region that contains a segment of the negative real axis� Thus the midpoint rule
will be unstable� On the other hand the Euler formula� whose stability region was drawn in
Figure ����� and again in Figure ������ leads to the stability restriction ���h�
 ��k� i�e�

k

�h�

��
� ������


On an in�nite grid this is ���� stricter than the stability restriction for the �nite di�erence
forward Euler formula considered in Example ������� �The cusped curve in Figure ����� is
���� times deeper than the dashed one�
 By Theorem ���� exactly the same restriction is
also valid for a periodic grid�

k

�h�

��
�
�

N�
� ������


As another example� the answer to Exercise ������a
 can be converted to the exact
stability bound for the �rd
order Adams
Bashforth discretization of ut�uxx�

In general� spectral methods on a periodic grid tend to have stability restrictions that
are stricter by a constant factor than their �nite di�erence counterparts� �This is opposite
to what the CFL condition might suggest� the numerical domain of dependence of a spectral
method is unbounded� so there is no CFL stability limit�
 The constant factor is usually
not much of a problem in practice� for spectral methods permit larger values of h than �nite
di�erence methods in the �rst place� because of their high order of spatial accuracy� In other
words� relatively small time steps k are needed anyway to avoid large time
discretization
errors�

EXERCISES


������ ������ A simple spectral calculation�

Write a program to solve ut � ux on ������ with periodic boundary conditions by the
pseudospectral method� The program should use the midpoint time integration formula
and spatial di�erentiation obtained from the program DERIV of Exercise ������

�a� Run the program up to t � �� with k � h��� N � � and N � ��� and initial data
v�� f�x
� v�� f�x k
� with both

f��x
� cos
�x and f��x
�

�
cos�x for jxj 
��� �mod��
�

� otherwise�

List the four ��N errors you obtain at t� ��� Plot the computed solutions v�x���
 if
possible�

�b� Rerun the program with k�h�� and list the same four errors as before�

�c� Explain the results of �a� and �b�� What order of accuracy is observed� How might it
be improved�

�Why is the ratio not �� � Because �
�
� ���h��	

�
 not ���h	
��
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������ ������ Spectral calculation with �ltering�

�a� Modify the program above so that instead of computing vn at each step with DERIV
alone� it uses DERIV followed by the program FILTER of Exercise ������ Take k�h��
again and print and plot the same results as in the last problem� Are the errors smaller
than they were without FILTER�

�b� Run the program again in DERIV"FILTER mode with k � h��� Print and plot the
same results as in �c��

�c� What is the exact theoretical stability restriction on k for the DERIV"FILTERmethod�
You may consider the limit N �� for simplicity�

Note� Filtering is an important idea in spectral methods� but this simple linear problem is
not a good example of a problem where �ltering is needed�


������ ������ Inviscid Burgers� equation�

Write a program to solve ut � �u
�
x on ������ with periodic boundary conditions by the

pseudospectral method� The program should use forward Euler time integration formula
and spatial di�erentiation implemented with the program DERIV�

�a� Run the program up to t � �� with k � h��� N � ��� and initial data v� � ��� 
����sinx� Plot the computed results �superimposed on a single plot
 at times t �
�� ���� ���� � � � ����

�b� Explain the results of part �a� as well as you can�

�c� �Optional�� Can you �nd a way to improve the calculation�
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This chapter discusses spectral methods for domains with boundaries�
The e�ect of boundaries in spectral calculations is great� for they often in�
troduce stability conditions that are both highly restrictive and di
cult to
analyze� Thus for a �rst�order partial di�erential equation solved on an N �
point spatial grid by an explicit time�integration formula� a spectral method
typically requires k �O�N��� for stability� in contrast to k�O�N��� for ��
nite di�erences� For a second�order equation the disparity worsens to O�N���
vs� O�N���� To make matters worse� the matrices involved are usually non�
normal� and often very far from normal� so they are di
cult to analyze as well
as troublesome in practice�

Spectral methods on bounded domains typically employ grids consisting
of zeros or extrema of Chebyshev polynomials ��Chebyshev points��� zeros or
extrema of Legendre polynomials ��Legendre points��� or some other set of
points related to a family or orthogonal polynomials� Chebyshev grids have
the advantage that the FFT is available for an O�N logN� implementation
of the di�erentiation process� and they also have slight advantages connected
their ability to approximate functions� Legendre grids have various theoretical
and practical advantages because of their connection with Gauss quadrature�
At this point one cannot say which choice will win in the long run� but in this
book� in keeping with out emphasis on Fourier analysis� most of the discussion
is of Chebyshev grids�

Since explicit spectral methods are sometimes troublesome� implicit spec�
tral calculations are increasingly popular� Spectral di�erentiation matrices are
dense and ill�conditioned� however� so solving the associated systems of equa�
tions is not a trivial matter� even in one space dimension� Currently popular
methods for solving these systems include preconditioned iterative methods
and multigrid methods� These techniques are discussed brie�y in x��
�
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���� Polynomial interpolation

Spectral methods arise from the fundamental problem of approximation
of a function by interpolation on an interval� Multidimensional domains of a
rectilinear shape are treated as products of simple intervals� and more compli�
cated geometries are sometimes divided into rectilinear pieces�� In this section�
therefore� we restrict our attention to the fundamental interval ������� The
question to be considered is� what kinds of interpolants� in what sets of points�
are likely to be e�ective�

Let N � � be an integer� even or odd� and let x�� � � � �xN or sometimes
x�� � � � �xN be a set of distinct points in ������� For de�niteness let the num�
bering be in reverse order�

� � x��x�� � � ��xN���xN � ��� �������

The following are some grids that are often considered�

Equispaced points� xj ��� �j

N
��� j�N��

Chebyshev zero points� xj �cos
�j������

N
��� j�N��

Chebyshev extreme points� xj �cos
j�

N
��� j�N��

Legendre zero points� xj � j th zero of PN ��� j�N��

Legendre extreme points� xj � j th extremum of PN ��� j�N��

where PN is the Legendre polynomial of degree N � Chebyshev zeros and ex�
treme points can also be described as zeros and extrema of Chebyshev polyno�
mials TN �more on these in x����� Chebyshev and Legendre zero points are also
called Gauss�Chebyshev and Gauss�Legendre points� respectively� and Cheby�
shev and Legendre extreme points are also called Gauss�Lobatto�Chebyshev
and Gauss�Lobatto�Legendre points� respectively� �These names originate in
the �eld of numerical quadrature��

�Such subdivision methods have been developed independently by I� Babushka and colleagues for
structures problems� who call them �p� �nite element methods� and by A� Patera and colleagues
for �uids problems� who call them spectral element methods�
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It is easy to remember how Chebyshev points are de�ned� they are the
projections onto the interval ������ of equally�spaced points �roots of unity�
along the unit circle jzj�� in the complex plane�

Figure ������ Chebyshev extreme points �N ����

To the eye� Legendre points look much the same� although there is no
elementary geometrical de�nition� Figure ����� illustrates the similarity�

�a� N ��

�b� N ���

Figure ������ Legendre vs� Chebyshev zeros�

As N��� equispaced points are distributed with density

��x��
N

�
Equally spaced� �������
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and Legendre or Chebyshev points�either zeros or extrema�have density

��x��
N

�
p
��x�

Legendre� Chebyshev� �������

Indeed� the density function ������� applies to point sets associated with any
Jacobi polynomials� of which Legendre and Chebyshev polynomials are special
cases�

Why is it a good idea to base spectral methods upon Chebyshev� Legen�
dre� and other irregular grids� We shall answer this question by addressing
a second� more fundamental question� why is it a good idea to interpolate a
function f�x� de�ned on ������ by a polynomial pN �x� rather than a trigono�
metric polynomial� and why is it a good idea to use Chebyshev or Legendre
points rather than equally spaced points�

	The remainder of this section is just a sketch� � � details to be supplied later�


PHENOMENA

Trigonometric interpolation in equispaced points su�ers from the Gibbs
phenomenon� due to Michelson and Gibbs at the turn of the twentieth cen�
tury� kf �pNk�O��� as N ��� even if f is analytic� One can try to get
around the Gibbs phenomenon by various tricks such as doubling the domain
and re�ecting� but the price is high�

Polynomial interpolation in equally spaced points su�ers from the Runge
phenomenon� due to Meray and Runge �Figure ������� kf�pNk�O��N��
much worse�

Polynomial interpolation in Legendre or Chebyshev points� kf �pNk�
O�constant�N � if f is analytic �for some constant greater than ��� Even if
f is quite rough the errors will still go to zero provided f is� say� Lipschitz
continuous�
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Figure ������ The Runge phenomenon�
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FIRST EXPLANATION�EQUIPOTENTIAL CURVES

Think of the limiting point distribution ��x�� above� as a charge density
distribution� a charge at position x is associated with a potential log jz�xj�
Look at the equipotential curves of the resulting potential function ��z� �R �
����x� log jz�xjdx�

CONVERGENCE OF POLYNOMIAL INTERPOLANTS

Theorem ����

In general� kf �pNk� � as N �� in the largest region bounded by an
equipotential curve in which f is analytic� In particular�

For Chebyshev or Legendre points� or any other type of Gauss�Jacobi points�
convergence is guaranteed if f is analytic on �������
For equally spaced points� convergence is guaranteed if f is analytic in a
particular lens�shaped region containing ������ �Figure ����	
�

Figure ������ Equipotential curves�
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SECOND EXPLANATION�LEBESGUE CONSTANTS

De�nition of Lebesgue constant�

�N � kINk��

where IN is the interpolation operator IN � f �� pN � A small Lebesgue constant
means that the interpolation process is not much worse than best approxima�
tion�

kf�pNk � ��N ���kf�p�Nk� �������

where p�N is the best �minimax� equiripple� approximation�

LEBESGUE CONSTANTS

Theorem ����

Equispaced points� �N 	 �N�eN logN �

Legendre points� �N 	 const
p
N �

Chebyshev points� �N 	 const logN �

THIRD EXPLANATION�NUMBER OF POINTS PER WAVELENGTH

Consider approximation of� say� fN �x� � cos 	Nx as N ��� Thus fN
changes but the number of points per wavelength remains constant� Will the
error kfN �pNk go to zero� The answer to this question tells us something
about the ability of various kinds of spectral methods to resolve data�

POINTS PER WAVELENGTH

Theorem ����

Equispaced points� convergence if there are at least 	 points per wavelength�

Chebyshev points� convergence if there are at least � points per wavelength
on average�

We have to say �on average� because the grid is nonuniform� In fact� it
is ��� times less dense in the middle than the equally spaced grid with the
same number of points N �see ������� and ��������� Thus the second part of
the theorem says that we need at least � points per wavelength in the center
of the grid�the familiar Nyquist limit� See Figure ������ The �rst part of
the theorem is mathematically valid� but of little value in practice because of
rounding errors�
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�a� Equally spaced points

�b� Chebyshev points

Figure ����	� Error as a function of N in interpolation of cos 	Nx�
with 	� hence the number of points per wavelength� held �xed�
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���� Chebyshev di�erentiation matrices

	Just a sketch


From now on �Chebyshev points� means Chebyshev extreme points�
Multiplication by the �rst�order Chebyshev di�erentiation matrix DN

transforms a vector of data at the Chebyshev points into approximate deriva�
tives at those points�

DN

�
������

v�

���

vN

�
������ �

�
������

w�

���

wN

�
������ �

As usual� the implicit de�nition of DN is as follows�

CHEBYSHEV SPECTRAL DIFFERENTIATION BY POLYNOMIAL INTERPOLA�

TION�

��� Interpolate v by a polynomial q�x�� qN �x��

��� Di�erentiate the interpolant at the grid points xj �

wj ��DNv�j � q��xj�� �������

Higher�order di�erentiation matrices are de�ned analogously� From this
de�nition it is easy to work out the entries of DN in special cases� For N ���

x�

�
�� �

��

�
�� � D� �

�
��
�
� ��

�

�
� ��

�

�
�� �

For N ���

x�

�
������

�

�

��

�
������ � D� �

�
������

�
� �� �

�

�
� � ��

�

��
� � ��

�

�
������ �
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For N ���

x�

�
�����������

�

�
�

��
�

��

�
�����������
� D� �

�
�����������

��

 �� �

� ��
�

� ��
� �� �

�

��
� � �

� ��
�
� ��

� � ���



�
�����������
�

These three examples illustrate an important fact� mentioned in the introduc�
tion to this chapter� Chebyshev spectral di�erentiation matrices are in general
not symmetric or skew�symmetric� A more general statement is that they are
not normal�� This is why stability analysis is di
cult for spectral methods�
The reason they are not normal is that unlike �nite di�erence di�erentiation�
spectral di�erentiation is not a translation�invariant process� but depends in�
stead on the same global interpolant at all points xj �

The general formula for DN is as follows� First� de�ne

ci �

�
� for i�� or N �

� for �� i�N���
�������

and of course analogously for cj � Then�

CHEBYSHEV SPECTRAL DIFFERENTIATION

Theorem ���� Let N � � be any integer� The 
rst�order spectral di�eren�
tiation matrix DN has entries

�DN ��� �
�N���

	
� �DN �NN � ��N���

	
�

�DN �jj �
�xj

����x�j �
for �� j�N���

�DN �ij �
ci
cj

����i�j
xi�xj

for i 
� j�

Analogous formulas for D�
N can be found in Peyret �� �	�� Ehrenstein !

Peyret �ref�� and in Zang� Streett� and Hussaini� ICASE Report � ���� � � �
See also Canuto� Hussaini� Quarteroni ! Zang�

�Recall that a normal matrix A is one that satis�es AAT � ATA� Equivalently� A possesses an
orthogonal set of eigenvectors� which implies many desirable properties such as ��An� � kAnk �
kAkn for any n�
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A note of caution� DN is rarely used in exactly the form described in
Theorem ���� for boundary conditions will modify it slightly� and these depend
on the problem�

EXERCISES


 ������ Prove that for any N � DN is nilpotent	 Dn
N 
� for a su�ciently high integer n�
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���� Chebyshev di�erentiation by the FFT

Polynomial interpolation in Chebyshev points is equivalent to trigonometric interpo�
lation in equally spaced points� and hence can be carried out by the FFT� The algorithm
described below has the optimal order O�N logN��� but we do not worry about achieving
the optimal constant factor� For more practical discussions� see Appendix B of the book by
Canuto� et al�� and also P� N� Swarztrauber� �Symmetric FFTs�� Math� Comp� �� �������

�
�
��� Valuable additional references are the book The Chebyshev Polynomials by Rivlin
and Chapter �
 of P� Henrici� Applied and Computational Complex Analysis	 �����

Consider three independent variables � � R� x � ������� and z � S� where S is the
complex unit circle fz 	 jzj
�g� They are related as follows	

z
 ei�� x
Rez
 �

�
�z�z���
 cos �� ���
���

which implies
dx

d�

�sin �
�

p
��x�� ���
���

See Figure ��
��� Note that there are two conjugate values z � S for each x� ������� and
an in�nite number of possible choices of ��

o*

o*

o* ����

�

x

z

z

Figure ������ z� x� and ��

�optimal� that is� so far as anyone knows as of �����
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In generalization of the fact that the real part of z is x� the real part of zn �n� ��
is Tn�x�� the Chebyshev polynomial of degree n� This statement can be taken as a
de�nition of Chebyshev polynomials	

Tn�x�
Rezn
 �

�
�zn�z�n�
 cos n�� ���
�
�

where x and z and � are� as always� implicitly related by ���
����� It is clear that ���
�
�
de�nes Tn�x� to be some function of x� but it is not obvious that the function is a polynomial�
However� a calculation of the �rst few cases makes it clear what is going on	

T��x� 

�

�
�z��z��� 
 ��

T��x� 

�

�
�z��z��� 
 x�

T��x� 

�

�
�z��z��� 
 �

�
�z��z������ 
 �x����

T��x� 

�

�
�z��z��� 
 �

�
�z��z����� �

�
�z��z��� 
 �x��
x�

���
���

In general� the Chebyshev polynomials are related by the three�term recurrence relation

Tn���x� 

�

�
�zn���z�n���


 �

�
�z��z����zn�z�n�� �

�
�zn���z�n���


 �xTn�x��Tn���x��

���
���

By ���
��� and ���
�
�� the derivative of Tn�x� is

T �

n�x�
�n sin n�
d�

dx


n sin n�

sin�
� ���
���

Thus just as x� z� and � are equivalent� so are Tn�x�� z
n� and cos n�� By taking linear

combinations� we obtain three equivalent kinds of polynomials� A trigonometric polyno�

mial q��� of degree N is a ���periodic sum of complex exponentials in � �or equivalently�
sines and cosines�� Assuming that q��� is an even function of �� it can be written

q���
 �

�

NX
n��

an�e
in��e�in��


NX
n��

an cos n�� ���
���

A Laurent polynomial q�z� of degree N is a sum of negative and positive powers of z up
to degree N � Assuming q�z�
 q��z� for z �S� it can be written

q�z�
 �

�

NX
n��

an�z
n�z�n�� ���
���

An algebraic polynomial q�x� of degree N is a polynomial in x of the usual kind� and we
can express it as a linear combination of Chebyshev polynomials	

q�x�


NX
n��

anTn�x�� ���
���

�Equivalently� the Chebyshev polynomials can be de�ned as a system of polynomials orthogonal on
	��� �
 with respect to the weight function ���x�������
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The use of the same coe�cients an in ���
�������
��� is no accident� for all three of the
polynomials above are identical	

q���
 q�z�
 q�x�� ���
����

where again� x and z and � are implicitly related by ���
���� For this reason we hope to be
forgiven the sloppy use of the same letter q in all three cases�

Finally� for any integer N � �� we de�ne regular grids in the three variables as follows	

�j 

j�

N
� zj 
 ei�j � xj 
Rezj 


�

�
�zj�z��j �
 cos �j ���
����

for �� j �N � The points fxjg and fzjg were illustrated already in Figure ������ And now
we are ready to state the algorithm for Chebyshev di�erentiation by the FFT�
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ALGORITHM FOR CHEBYSHEV DIFFERENTIATION

�� Given data fvjg de
ned at the Chebyshev points fxjg	 �� j �N 	 think of the same
data as being de
ned at the equally spaced points f�jg in ������

�� �FFT� Find the coe
cients fang of the trigonometric polynomial

q���


NX
n��

an cos n� ���
����

that interpolates fvjg at f�jg�
�� �FFT� Compute the derivative

dq

d�

�

NX
n��

nan sin n�� ���
��
�

�� Change variables to obtain the derivative with respect to x�

dq

dx


dq

d�

d�

dx



NX
n��

nan sin n�

sin �



NX
n��

nan sin n�p
��x�

� ���
����

At x
��	 i�e� �
���	 L�Hopital�s rule gives the special values

dq

dx
����


NX
n��

����nn�an ���
����

�� Evaluate the result at the Chebyshev points�

wj 

dq

dx
�xj�� ���
����

Note that by ���
�
�� equation ���
���� can be interpreted as a linear combination of
Chebyshev polynomials� and by ���
���� equation ���
���� is the corresponding linear com�
bination of derivatives�� But of course the algorithmic content of the description above
relates to the � variable� for in Steps � and 
� we have performed Fourier spectral di�erenti�
ation exactly as in x��
	 discrete Fourier transform� multiply by i�� inverse discrete Fourier
transform� Only the use of sines and cosines rather than complex exponentials� and of n
instead of �� has disguised the process somewhat�

�or of Chebyshev polynomials Un�x� of the second kind�
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EXERCISES


������ ������ Fourier and Chebyshev spectral di�erentiation�

Write four brief� elegant Matlab programs for �rst�order spectral di�erentiation	

FDERIVM� CDERIVM	 construct di�erentiation matrices�

FDERIV� CDERIV	 di�erentiate via FFT�

In the Fourier case� there are N equally spaced points x
�N��� � � � �xN���� �N even� in

������� and no boundary conditions� In the Chebyshev case� there are N Chebyshev points
x�� � � � �xN in ������ �N arbitrary�� with a zero boundary condition at x
�� The e�ect of
this boundary condition is that one removes the �rst row and �rst column from DN � leading
to a square matrix of dimension N instead of N���

You do not have to worry about computational e�ciency �such as using an FFT of length
N rather than �N in the Chebyshev case�� but you are welcome to worry about it if you
like�

Experiment with your programs to make sure they di�erentiate successfully� Of course� the
matrices can be used to check the FFT programs�

�a� Turn in a plot showing the function u�x� 
 cos�x��� and its derivative computed by
FDERIV� for N 

�� Discuss the results�

�b� Turn in a plot showing the function u�x� 
 cos��x��� and its derivative computed by
CDERIV� again for N 

�� Discuss the results�

�c� Plot the eigenvalues of DN for Fourier and Chebyshev spectral di�erentiation with
N 
�� ��� 
�� ���



���� STABILITY TREFETHEN ���� � ���

���� Stability

This section is not yet written� What follows is a copy of a paper of mine from K�
W� Morton and M� J� Baines� eds�� Numerical Methods for Fluid Dynamics III� Clarendon
Press� Oxford� �����

Because of stability problems like those described in this paper� more and more atten�
tion is currently being devoted to implicit time�stepping methods for spectral computations�
The associated linear algebra problems are generally solved by preconditioned matrix iter�
ations� sometimes including a multigrid iteration�

This paper was written before I was using the terminology of pseudospectra� I would
now summarize Section � of this paper by saying that although the spectrum of the Legendre
spectral di�erentiation matrix is of size ��N� asN��� the pseudospectra are of size ��N��
for any � 	 �� The connection of pseudospectra with stability of the method of lines was
discussed in Sections ��������
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��	� Some review problems

EXERCISES


 ������ TRUE or FALSE� Give each answer together with at most two or three
sentences of explanation� The best possible explanation is a proof� a counterexample�
or the citation of a theorem in the text from which the answer follows� If you can
t
do quite that well� try at least to give a convincing reason why the answer you have
chosen is the right one� In some cases a well�thought�out sketch will su�ce�

�a� The Fourier transform of f�x�� exp��x�� has compact support�

�b� When you multiply a matrix by a vector on the right� i�e� Ax� the result is a
linear combination of the columns of that matrix�

�c� If an ODE initial�value problem with a smooth solution is solved by the fourth�
order Adams�Bashforth formula with step size k� and the missing starting values
v�� v�� v� are obtained by taking Euler steps with some step size k�� then in
general we will need k��O�k�� to maintain overall fourth�order accuracy�

�d� If a consistent �nite di�erence model of a well�posed linear initial�value problem
violates the CFL condition� it must be unstable�

�e� If you Fourier transform a function u�L� four times in a row� you end up with
u again� times a constant factor�

�f� If the function f�x�� �x���x��������� is interpolated by a polynomial qN�x�
in N equally spaced points of ������� then kf�qNk�� � as N���

�g� ex�O�xex��� as x���

�h� If a stable �nite�di�erence approximation to ut � ux with real coe�cients has
order of accuracy �� then the formula must be dissipative�

�i� If

A�

	
�
� �
�
�

�
�



�

then kAnk�C �n for some constant C ���

�j� If the equation ut � ����A�u is solved by the fourth�order Adams�Moulton
formula� where u�x�t� is a ��vector and A is the matrix above� then k����� is
a su�ciently small time step to ensure time�stability�

�k� Let ut�uxx on ������� with periodic boundary conditions� be solved by Fourier
pseudospectral di�erentiation in x coupled with a fourth�order Runge�Kutta
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formula in t� For N � ��� k � ���� is a su�ciently small time step to ensure
time�stability�

�l� The ODE initial�value problem ut � f�u�t� � cos�u� u��� � �� � � t � ���� is
well�posed�

�m� In exact arithmetic and with exact starting values� the numerical approxima�
tions computed by the linear multistep formula

vn�� � �
��v

n���vn���vn�� �
�k�f

n���fn���fn�

are guaranteed to converge to the unique solution of a well�posed initial�value
problem in the limit k� ��

�n� If computers did not make rounding errors� we would not need to study stability�

�o� The solution at time t�� to ut�ux�uxx �x�R � initial data u�x���� f�x�� is
the same as what you would get by �rst di�using the data f�x� according to the
equation ut�uxx� then translating the result leftward by one unit according to
the equation ut�ux�

�p� The discrete Fourier transform of a three�dimensional periodic set of data on an
N�N�N grid can be computed on a serial computer in O�N� logN� operations�

�q� The addition of numerical dissipation may sometimes increase the stability limit
of a �nite di�erence formula without a�ecting the order of accuracy�

�r� For a nondissipative semidiscrete �nite�di�erence model �i�e�� discrete space but
continuous time�� phase velocity as well as group velocity is a well�de�ned quan�
tity�

�s� vn��� � vn� is a stable left�hand boundary condition for use with the leap frog
model of ut�ux with k�h�����

�t� If a �nite di�erence model of a partial di�erential equation is stable with k�h�
�� for some ��� �� then it is stable with k�h�� for any �����

�u� To solve the system of equations that results from a standard second�order
discretization of Laplace
s equation on an N�N�N grid in three dimensions
by the obvious method of banded Gaussian elimination� without any clever
tricks� requires ��N�� operations on a serial computer�

�v� If u�x�t� is a solution to ut � iuxx for x�R � then the ��norm ku��� t�k is inde�
pendent of t�

�w� In a method of lines discretization of a well�posed linear IVP� having the ap�
propriate eigenvalues �t in the appropriate stability region is su�cient but not
necessary for Lax�stability�

�x� Suppose a signal that
s band�limited to frequencies in the range ����kHz� ��kHz�
is sampled ������ times a second� i�e�� fast enough to resolve frequencies in the
range ����kHz���kHz�� Then although some aliasing will occur� the information
in the range ����kHz���kHz� remains uncorrupted�
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��
� Two �nal problems

EXERCISES


������ ������ Equipotential curves� Write a short and elegant Matlab program to plot
equipotential curves in the plane corresponding to a vector of point charges �inter�
polation points� x�� � � � �xN � Your program should simply sample N��P log jz�xj j
on a grid� then produce a contour plot of the result� �See meshdom and contour��
Turn in beautiful plots corresponding to �a� � equispaced points� �b� � Chebyshev
points� �c� �� equispaced points� �d� �� Chebyshev points� By all means play around
with �D graphics� convergence and divergence of associated interpolation processes�
or other amusements if you
re in the mood�


������ ����	� Fun with Chebyshev spectral methods� The starting point of this problem
is the Chebyshev di�erentiation matrix of Exercise 	����� It will be easiest to use
a program like CDERIVM from that exercise� which works with an explicit matrix
rather than the FFT� Be careful with boundary conditions� you will want to square
the �N�����N��� matrix �rst before stripping o� any rows or columns�

�a� Poisson equation in �D� The function u�x� � ���x��ex satis�es u�	�� � � and
has second derivative u���x� ������x�x��ex� Thus it is the solution to the
boundary value problem

uxx������x�x��ex� x� ������� u�	����� ���

Write a little Matlab program to solve ��� by a Chebyshev spectral method and
produce a plot of the computed discrete solution values �N�� discrete points in
������� superimposed upon exact solution �a curve�� Turn in the plot for N ��
and a table of the errors ucomputed����uexact��� for N �������	� What can you
say about the rate of convergence�

�b� Poisson equation in 	D� Similarly� the function u�x�y�� ���x�����y��cos�x�y�
is the solution to the boundary value problem

uxx�uyy� �sorry� illegible��� x�y� ������� u�x�	���u�	��y�� �� ���

Write a Matlab program to solve ��� by a Chebyshev spectral method involving
a grid of �N � ��� interior points� You may �nd that the Matlab command
KRON comes in handy for this purpose� You don
t have to produce a plot of
the computed solution� but do turn in a table of ucomputed������uexact����� for
N �������	� How does the rate of convergence look�

�c� Heat equation in �D� Back to �D now� Suppose you have the problem

ut�uxx� u�	�� t�� �� u�x���� ���x��ex� ���
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At what time tc does maxx�	����
u�x�t� �rst fall below �� Figure out the answer
to at least � digits of relative precision� Then describe what you would do if I
asked for �� digits�
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