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Abstract

Solving boundary-value problems

for systems of hyperbolic conservation laws

with rapidly varying coeÆcients

by Darryl H. Yong

Chair of Supervisory Committee

Professor Jirair Kevorkian
Applied Mathematics

We study how boundary conditions a�ect the multiple-scale analysis of hyperbolic

conservation laws with rapid spatial 
uctuations. The most signi�cant diÆculty occurs

when one does not have enough boundary conditions to solve consistency conditions.

We show how to overcome this missing boundary condition diÆculty for both linear

and nonlinear problems through the recovery of boundary information. We introduce

two methods for this recovery (multiple-scale analysis with a reduced set of scales,

and a combination of Laplace transforms and multiple scales) and show that they are

roughly equivalent. We also show that the recovered boundary information is likely

to contain secular terms if the initial conditions are nonzero. However, for the linear

problem we demonstrate how to avoid these secular terms to construct a solution that

is valid for all time. For nonlinear problems, we argue that physically relevant problems

do not exhibit the missing boundary condition diÆculty.
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� General small parameter satisfying 0 < �� 1

x� = x=� \Fast" or compressed spatial variable

~x = �x Stretched spatial variable

x̂ = �2x Very stretched spatial variable

t� = t=� Fast temporal variable

~t = �t Slow temporal variable

t̂ = �2t Very slow temporal variable

A;N Uppercase roman and script letters represent matrices

u Bolded, roman letters represent vectors

a12; u1 Numerical subscripts represent elements of vectors and
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ut Non-numerical subscripts represent partial derivatives

u(2) Numerical superscripts in parenthesis represent terms

in an asymptotic series

u(2) Underlined variables are independent of x�

hai Angled brackets represent averages with respect to x�

(see Appendix A)

fag Braces represent zero-average quantities with respect to x�

(see Appendix A)

[[a]] Double brackets represent zero-average integrals of fag

(see Appendix A)

O(�n) \Big-O" Notation
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Chapter 1

INTRODUCTION

The goal of our research is to apply the multiple-scale method to boundary-value

problems for hyperbolic conservation laws with rapidly 
uctuating quantities. We are

interested in the e�ects that boundary conditions have on the multiple-scale analysis

of these problems. In this chapter, we discuss hyperbolic conservation laws, why we

use the method of multiple scales, and hint at the diÆculties that boundary conditions

pose.

1.1 Hyperbolic conservation laws and the theory of homogenization

Hyperbolic conservation laws, which typically arise from physical principles such as the

conservation of energy or momentum, govern the propagation of information at �nite

speeds through some medium. The governing equations for shallow water waves and

acoustics are canonical examples.

When properties of the medium being modeled have rapid spatial variations, the

governing hyperbolic conservation laws typically exhibit these variations in their coeÆ-

cients. For example, wave propagation in a bubbly liquid [7, 25], and gravity waves in a

channel with a rough bottom [28] are modeled using hyperbolic conservation laws with

rapid spatial 
uctuations. If these 
uctuations are large (for example, the amplitude

of 
uctuations being comparable to its average value), regular perturbation techniques

cannot be used. In such situations, the exact solution to the conservation laws can-
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not be derived analytically. Instead, one seeks to determine the qualitative e�ects of

these rapid spatial 
uctuations (often dispersion or di�usion), or to �nd \e�ective"

equations that describe the average behavior of the system.

What we have just described is one facet of the theory of homogenization. In

short, the theory of homogenization attempts to describe the macroscopic properties

of objects that have microscopic details. Often, one seeks to replace a very detailed

mathematical description of a physical problem with a formulation that is mathemat-

ically simpler, yet still able to account for those details that have been \averaged" or

\homogenized."

The literature in this area is vast and encompasses many disciplines of mathemat-

ics. Systematic treatment of the theory of homogenization began with the work of

Bensoussan, Lions, and Papanicolaou in 1978, although the application of multiple

scales to the theory of homogenization was anticipated by J. B. Keller [5]. Another

standard reference in this �eld is Bakhvalov and Panasenko [3]. For a list of speci�c

applications of homogenization techniques, see Kevorkian and Bosley [19].

1.2 About multiple-scale analysis

The basic assumption of the method of multiple scales is that the system being studied

exhibits features at scales that are di�erent enough that the features at each scale are

somehow weakly correlated. For example, although the tiny bubbles in a liquid may

cause minute variations in the propagation a wave through that liquid, our intuition

tells us that the overall shape, speed and direction of the wave is not a�ected by the

bubbles. Mathematically, this assumption means that the spatial scales x� = x=�, x ,

~x = �x , and x̂ = �2x , with 0 < �� 0, are independent from one another even though

they are linearly related to one another; we can therefore consider partial derivatives

with respect to each of these spatial scales. Similarly, we argue that the temporal
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scales t, t� = t=�, and ~t = �t are independent as well.

This notion of the separated scales is precisely why the method of multiple scales

is naturally suited for problems whose media have properties with rapid spatial 
uctu-

ations. In fact, the method of multiple scales was the method of choice for Bensous-

san, Lions, and Papanicolaou [5]. For a complete reference on the method of multiple

scales, we refer the reader to the book by Kevorkian and Cole [20].

Another important assumption in our analysis is that the desired unknown quantities

can be represented in an asymptotic expansion|in other words, that the unknown

quantities can be approximated by a series of terms in some appropriate limit, usually

�! 0. The asymptotic expansion does not have to converge (and often is most useful

when it does not), but each term in the asymptotic expansion must be smaller than the

previous term in the region of validity of the expansion. For a thorough development

of these ideas, we refer the reader to Chapter 1 of Murray's book [26].

1.3 Problem of the missing boundary conditions

Even though almost all physically relevant problems involve boundaries of some sort

and therefore necessitate the enforcement of boundary conditions, there are many

instances in which boundary conditions complicate matters considerably. For example,

although it is more convenient to consider an in�nite tank of shallow water, such a

tank cannot exist. Kevorkian and Bosley have worked out the initial-value problem

for a general system of hyperbolic conservation laws with rapid spatial 
uctuations

using multiple-scale analysis [19]. They do not discuss problems with both initial

and boundary conditions because of a mathematical diÆculty with \missing boundary

conditions." In this section, we describe two ways this problem can occur.

In [30], Santosa and Symes use Bloch wave expansions to derive an e�ective equa-

tion for wave propagation in a periodic composite material. For the one-dimensional
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linear wave equation

�(x�)utt � (k(x�)ux)x = 0; (1.1)

with � and k as the density and bulk modulus and x� = x=� as the \fast" spatial

variable (�� 1), they �nd that the homogenized behavior has the governing equation

@2w
(h)
1

@t2
� �

@2w
(h)
1

@x2
+ �2�

@4w
(h)
1

@x4
+O(�3) = 0;

as �! 0. (This equation is also derived in [19].) Here, w
(h)
1 is one of the homogenized

characteristic dependent variables (the other dependent variable w
(h)
2 has a similar

governing equation), and the constants � and � are complicated expressions related

to �(x�) and k(x�). The most signi�cant part of this homogenized equation is the

fourth partial derivative with respect to the spatial dimension, indicating dispersion

(waves speed varies with wavenumber). For an initial-value problem the fourth partial

derivative poses no complications, but for a problem with boundaries one needs more

boundary information than is known from the outset of solving (1.1). Santosa and

Symes note that, \in the presence of boundaries, none of what is discussed up to now

is valid, some other approach will be necessary." [30]

The diÆculty of missing boundary conditions manifests itself in a di�erent manner

through the method of multiple scales. When using the method of multiple scales,

one typically encounters consistency conditions (sometimes also known as solvability

conditions) that must be satis�ed to construct an asymptotically valid answer (to

avoid secular terms). These consistency conditions can be of a di�erent class of

partial di�erential equations (PDEs) as the original problem and therefore require

more boundary and initial conditions than can be speci�ed for the original problem

without creating an ill-posed problem.
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1.4 Proposed work

In this thesis, we present two methods for analyzing systems of hyperbolic conserva-

tion laws with rapid spatial 
uctuations. The �rst is the usual multiple-scale method

(Chapter 4), and the second is a combination of multiple-scale analysis with Laplace

transforms (Chapter 5). Using both methods, we highlight the missing boundary

condition diÆculty and show how to overcome it through the recovery of boundary

information.

Before these main chapters, we �rst describe how to solve systems of hyperbolic

conservation laws without rapid spatial 
uctuations when boundary conditions are

speci�ed. The results obtained in Chapter 2 will give us some insights to the problems

with rapid spatial 
uctuations.

In Chapter 3, we recount how to write a general system of hyperbolic conservation

laws in a standard form. We also discuss the boundedness of solutions to a linear

problem and how initial conditions must be carefully chosen to avoid solutions that

depend on the fast temporal scale, t� = t=�.
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Chapter 2

INITIAL-BOUNDARY VALUE PROBLEMS

FOR A PAIR OF CONSERVATION LAWS

Before we study hyperbolic conservation laws with rapidly 
uctuating coeÆcients,

we �rst analyze initial-boundary value problems for hyperbolic conservation laws with-

out such 
uctuations. The goal of this section is to identify how boundary conditions

a�ect the multiple-scale solution procedure.

We begin this chapter by studying the one-dimensional wavemaker problem for

shallow water 
ow. Next, we generalize our results to a general nonlinear pair of hy-

perbolic conservation laws. We do not consider systems of three or more conservation

laws to avoid the possibility of resonant interactions between the dependent variables

for certain periodic initial conditions [17].

One way to obtain closed form solutions to a general system of nonlinear conserva-

tion laws is to perturb about a constant steady state, reducing a potentially nonlinear

problem to a linear one. In these situations, the appropriate strategy for an initial-

value problem is to use slow temporal scales (for example, ~t = �t where 0 < � � 1)

to capture any nonlinear e�ects (Section 8.3.2 of [18]). For a signaling problem,

in which boundary conditions represent signals that propagate into an initially quies-

cent medium, the correct strategy is to use stretched spatial scales, such as ~x = �x

(Section 6.2.4 of [20]). For a problem with both initial and boundary conditions, we

anticipate that the correct solution procedure involves both slow temporal scales and

stretched spatial scales.
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2.1 Wavemaker problem for shallow water 
ow

To illustrate the main ideas of this chapter, let us consider a wavemaker problem for

one-dimensional shallow water waves. Let h(x; t; �) and u(x; t; �) be the height and

velocity of water in a one-dimensional tank. The governing equations,

ht + (uh)x = 0 (2.1a)

ut + hx + uux = 0; (2.1b)

are derived from physical principles in Section 3.2 of [18]. Because we are more

interested in how the solution procedure is a�ected by boundaries rather than obtaining

highly accurate solutions, we have ignored higher-order correction terms in (2.1b) that

account for the motion in the vertical direction [20].

Equations (2.1) have been normalized so that the resting state of the water cor-

responds to u = 0 and h = 1. Suppose that our tank is semi-in�nitely long with a

wavemaker situated near the origin at xp = �p(t), where 0 < �� 1 is our usual small

parameter. The wavemaker introduces the boundary condition

u(�p(t); t; �) = �p0(t): (2.2)

In addition, let us prescribe some initial height and velocity perturbations:

h(x; 0; �) = 1 + �g(x); (2.3a)

u(x; 0; �) = �v(x): (2.3b)

Figure 2.1 shows a picture of our one-dimensional tank.

Notice that in equation (2.2) we implicitly assume that the wavemaker does not

move very much. This assumption allows us to use a Taylor series expansion to replace

a moving boundary problem with a �xed boundary problem:

u(�p(t); t; �) = u(0; t; �) + �ux(0; t; �)p(t) +
1
2
�2uxx(0; t; �)p

2(t) +O(�3) = �p0(t);

(2.4)



8

x
xp

h

1

Figure 2.1: Wavemaker problem for one-dimensional shallow water waves.

as � ! 0. The solution domain for our problem is now the quarter space x > 0 and

t > 0.

We assume that the unknown functions have the asymptotic expansions1

u(x; t; �) = �u(1)(x; ~x; t; ~t) + �2u(2)(x; ~x; t; ~t) +O(�3); (2.5a)

h(x; t; �) = 1 + �h(1)(x; ~x; t; ~t) + �2h(2)(x; ~x; t; ~t) +O(�3); (2.5b)

as �! 0. To capture the nonlinear behavior of (2.1) we include the slow scales ~x = �x

and ~t = �t. Another reason to include these additional scales is that without them,

we would not be able to avoid secular terms that cause our solution to grow linearly

in time and space. (We discuss secular terms more completely on the next page.)

1We wish to remind the reader that the remainder term in every asymptotic expansion is more an

indication of the rate of convergence of the truncated expansion, than the accuracy of the truncated

expansion. In other words, the fact that the O(�3) terms are omitted in (2.5) means that the

truncated series up to the �
2 contribution will converge like �

3 as � ! 0. In the rest of this paper,

we will omit the reminder \� ! 0," which the reader should implicitly assume anytime the symbol

O(�n) appears in an asymptotic expansion.
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2.1.1 O(�) system

Now we plug (2.5) into (2.1) and collect all terms proportional to �, obtaining the

O(�) system of equations,

h
(1)
t + u(1)x = 0 (2.6a)

u
(1)
t + h(1)x = 0; (2.6b)

which are subject to the initial and boundary conditions

h(1)(x; ~x; 0; 0) = g(x); (2.7a)

u(1)(x; ~x; 0; 0) = v(x); and (2.7b)

u(1)(0; 0; t; ~t) = p0(t): (2.7c)

We solve (2.6) by introducing the characteristic independent variables, � = x � t and

� = x + t, along with the characteristic dependent variables, R(i) = h(i) + u(i) and

L(i) = h(i) � u(i). We �nd that

R(1)
� = L

(1)
� = 0;

which implies that R(1) represents waves traveling to the \right" in the x-t plane, and

L(1) represents waves traveling to the \left." We cannot determine anything about

the ~x- and ~t-dependencies of R(1) and L(1) until we consider the equations arising at

the next order of �. The initial and boundary conditions (2.7) will be used later.

2.1.2 O(�2) system

Collecting terms proportional to �2 yields

h
(1)
~t

+ h
(2)
t + u

(1)
~x +

[
u(1)h(1) + u(2)

]
x
= 0

u
(1)
~t

+ u
(2)
t + h

(1)
~x + h(2)x + u(1)u(1)x = 0;
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which can be written in terms of characteristic independent and dependent variables

as

R(2)
� = �

1

2

[
R

(1)
~t

+ R
(1)
~x +

3

4
R(1)R

(1)
�

]
+

1

8

(
L(1)L(1)

� + R(1)L(1)
� + L(1)R

(1)
�

)
(2.8a)

L
(2)
� =

1

2

[
L
(1)
~t
� L

(1)
~x �

3

4
L(1)L(1)

�

]
+

1

8

(
R(1)R

(1)
� + R(1)L(1)

� + L(1)R
(1)
�

)
: (2.8b)

The quantity in the square brackets in (2.8a) is independent of �, so simply integrating

(2.8a) with respect to � will result in terms proportional to �, examples of so-called

secular terms.2 Secular terms should be avoided because they limit the region of va-

lidity of our asymptotic expansion; for large �, the terms in the asymptotic expansion

outgrow their assigned orders of magnitude. Likewise, the quantity inside the square

brackets in (2.8b) must be set to zero. Therefore, to avoid all secular terms, the fol-

lowing pair of consistency conditions (sometimes also known as solvability conditions),

R
(1)
~t

+ R
(1)
~x +

3

4
R(1)R

(1)
� = 0; (2.9a)

L
(1)
~t
� L

(1)
~x �

3

4
L(1)L(1)

� = 0; (2.9b)

must be satis�ed, subject to the conditions

L(1)
∣∣
t=0

= g(x)� v(x); (2.10a)

R(1)
∣∣
t=0

= g(x) + v(x); and (2.10b)

R(1)
∣∣
x=0

� L(1)
∣∣
x=0

= 2p0(t): (2.10c)

Notice that the boundary condition (2.10c) now involves a linear combination of L(1)

and R(1). (To obtain more accurate solutions, a correction term should be added to

(2.1b) which changes (2.9) from quasi-linear �rst-order partial di�erential equations

to a pair of Korteweg-de Vries equations [18]).

2In the context of celestial mechanics, secular terms account for long-term deviations from the most

prominent periodic features of the object being studied. For example, the presence of other planets

in our solar system causes the earth's orbit around the sun to precess at a very slow rate [31].
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The key to solving (2.9) is choosing the correct scales for R(1) and L(1). Because

L(1) represents waves that are traveling to the left in the x-t plane (towards the wave-

maker), these left-going waves are primarily de�ned by the initial condition (2.10a) and

don't interact with the boundary condition until they meet the wavemaker. There-

fore, we should choose scales that are appropriate for an initial-value problem; in other

words, we let L(1) = L(1)(�; ~t).

The situation for R(1) is a little more complicated as there are some outgoing waves

that are in
uenced solely by the initial height and velocity perturbation, and there are

some that are caused by the wavemaker. To make this distinction clear, we separate

the solution domain, x > 0 and t > 0, into two regions by introducing a positive,

monotone increasing function J(t) with J(0) = 0 so that x = J(t) is the interface

between the two regions. Let's choose Region A to have x = 0 and x = J(t) as its

boundaries, Region B to have t = 0 as one of its boundaries. See Figure 2.2.

x

t

x = J(t)

Region A

Region B

0

Figure 2.2: Solution domain divided into two regions.

We denote R(A) and R(B) for R(1) in regions A and B, respectively. As Region B is

ahead of the interface, the water there does not yet feel the in
uence of the boundary.

Therefore, we should choose the scales that are appropriate for an initial-value problem
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in Region B; in other words, we use let R(B) = R(B)(�; ~t). In Region A, we will allow

R(A) to depend on both ~x = �x and ~t by de�ning R(A) = R(A)(�; ~x; ~t). To summarize,

L(1) = L(1)(�; ~t);

R(1) =



R(A)(�; ~x; ~t) if x < J(t)

R(B)(�; ~t) if x > J(t):

It can be shown that if R(A) is not allowed to depend on ~x , there will not be enough

degrees of freedom to satisfy the initial and boundary conditions in (2.10).

The governing equations for L(1) and R(B) are

R
(B)
~t

+
3

4
R(B)R

(B)
� = 0;

L
(1)
~t
�

3

4
L(1)L(1)

� = 0;

since they do not depend on ~x . These �rst-order quasilinear partial di�erential equa-

tions are easily solved using the method of characteristics. Keeping in mind that the

initial conditions are given in (2.10a) and (2.10b), their solutions are

R(B)(�; ~t) = g(x) + v(x); where x solves � = 3
4
~t (g(x) + v(x)) + x; (2.11a)

L(1)(�; ~t) = g(x)� v(x); where x solves � = �3
4
~t (g(x)� v(x)) + x: (2.11b)

Without knowing more about the speci�c functions g(x) and v(x), these solutions

can only be expressed as implicitly de�ned functions.

Once L(1) is known, the boundary condition (2.10c) becomes

R(A)(�t;�~t; ~t) = L(1)(t; ~t) + 2p0(t):

Using the method of characteristics again, we can now obtain an implicitly de�ned

solution for R(A):

R(A)(�; ~x; ~t) = f (��; ~t � ~x); where � solves � =
3

4
~xf (��; ~t � ~x) + �; (2.12)
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and f (t; ~t) = L(1)(t; ~t) + 2p0(t).

Because (2.9a) and (2.9b) are �rst-order quasilinear partial di�erential equations

(sometimes referred to as inviscid Burgers' equations), they admit solutions with

shocks. Even when the initial conditions are continuous, wave steepening can lead

to shocks forming at later times. When a shock forms, we must turn to the integral

formulation of the original conservation laws instead of using (2.9) to determine the

shock trajectory. This is because a quasilinear-�rst order equation like (2.9) can be

manipulated to predict a variety of di�erent shock speeds. Since (2.9) is an arti�cial

equation that is not based on physical principles, we cannot expect it to predict the

correct shock trajectory in its current form.

The true governing equations for shallow water 
ow exhibiting the proper 
ux and

conserved quantities, are

ht + (uh)x = 0; (2.13a)

(uh)t +

(
u2h +

h2

2

)
x

= 0: (2.13b)

Therefore, the correct shock speed is governed by the pair of equations

ds

dt
[h]

+
� = [uh]

+
� ; (2.14a)

ds

dt
[uh]

+
� =

[
u2h +

h2

2

]+
�

; (2.14b)

where s(t) is the shock trajectory and the notation [�]+� denotes the value of the

jump of a quantity across its discontinuity. For example, if the shock occurs for R(1),

plugging the expansion (2.5) into (2.14) gives the ordinary di�erential equation,

dK

d ~�
=

[
3
8

(
R(1)

)2]+
�

[R(1)]
+
�

=
3

8

[
R(A) + R(B)

]
�=K(~�)

; (2.15)

which governs the shock trajectory, here written as � = x � t = K(~�), where ~� = ��.

The details of this derivation are given in Section 6.2.4 of [20]. (In this situation, it
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just happens that the consistency condition (2.9a) produces the correct shock speed,

but this may not be true in general.)

Now the only remaining task is to �nd J(t), the trajectory of the interface between

Regions A and B. When the initial velocity perturbation (2.3b) exactly matches the

water velocity imposed by the wavemaker in (2.2), the interface J(t) is simply the

characteristic emanating from the origin, which we know from the form of the charac-

teristic independent variables is x = t. In more realistic situations, the initial condition

and boundary condition will not match exactly and a shock or a fan will result.

The case of a fan is exempli�ed in a dam-breaking problem in Section 4.3.4 of [18].

In this situation, the solution domain should be divided into three regions: Region A

(water under the in
uence of the wavemaker), Region B (water under the in
uence

of the initial height and velocity perturbations), and a fan region between Regions A

and B.

In the case when a shock forms, the trajectory of the interface between Regions A

and B is the shock itself. Rewriting (2.15) using physical independent variables, we

obtain

dJ

dt
=

1 + �3
8

(
R(A) + R(B)

)
1� �38 (R

(A) + R(B))

∣∣∣∣∣
x=J(t)

: (2.16)

(All occurrences of ~t and ~x in the right hand side of (2.16) must now be written in

terms of t and x .) In most situations, (2.16) will be a nonlinear ordinary di�erential

equation and must be solved numerically subject to the initial condition J(0) = 0. If

� is small, we can approximate the shock trajectory with a straight line by using the

initial slope as the slope for the entire line:

J(t) �

(
1 + �3

4
(g(0) + p0(0))

1� �34 (g(0) + p0(0))

)
t:
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2.1.3 Numerical veri�cation

We performed numerical calculations using the CLAWPACK software package [24]

written by Randall J. LeVeque. We chose the initial and boundary conditions,

u(x; 0; �) = 0

h(x; 0; �) = 1 + �
x

x + 1

u(�p(t); t; �) = �p0(t) with p(t) =
t

t + 1
;

so that a shock forms because of a mismatch of the velocity at x = t = 0 and no

additional shocks will form at later times. We took � = 0:1 and approximated the

shock trajectory with a line as discussed above. We chose a spatial step size of 0:05

and used Godunov's method (no second-order corrections).

Figure 2.3 shows the numeric and analytic solutions �ve units of time after the initial

height and velocity perturbations. The agreement between the two solutions is fairly

good; the slight discrepancy in the tail of u beyond the shock could be improved by a

more accurate shock location. Notice that the analytic solution exhibits a discontinuity

in the height and velocity at the shock, while the numeric solution presents a smooth

solution because of numerical dissipation.

2.2 General pair of conservation laws

Consider now a pair of conservation laws written in di�erential form,

pt + qx = 0; (2.17)

where the conserved quantity p and the 
ux q are two-component vectors. Let � be a

small, positive parameter: 0 < �� 1. We assume that each pi , qi and si is a function

of the two dependent variables, u1, and u2 so that the conservation laws are spatially

homogeneous.
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Figure 2.3: Comparison of a numeric versus analytic solution of a wavemaker problem

for the shallow water wave equations at t = 5.

Besides shallow water 
ow, equation (2.17) can represent nearly isentropic gas

dynamics (see Section 3.3.4 of [18]). With the addition of a source term on the

right-hand side of (2.17), one could model glacier 
ow, chemical exchange processes,

chromatography, sedimentation in glaciers and 
ow in a channel (see Chapter 3 of

[32]). In this thesis, we restrict our attention to the cases without sources because

they would obscure our goal of understanding problems with boundaries. A discussion

of the initial-value problem for a class of conservation laws with source terms can be

found in [21].

Evaluating derivatives with respect to t and x , (2.17) can be reduced to

ut + A(u)ux = 0; (2.18)
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where

A(u) =

[
@(p1; p2)

@(u1; u2)

]�1 [
@(q1; q2)

@(u1; u2)

]
is a product of two Jacobian matrices.

To make progress on an analytic solution to (2.18), we assume that there exists a

constant steady state, u(0), about which we construct a perturbation expansion:

u(x; t; �) = u(0) + �u
()
O (x; ~x; t; ~t) + u(2)(x; ~x; t; ~t) +O(�3): (2.19)

With this choice of scales, derivatives with respect to x and t become

@

@x
!

@

@x
+ �

@

@~x
(2.20a)

@

@t
!

@

@t
+ �

@

@~t
: (2.20b)

We also expand the matrix A(u) as

A(u) = A
(
u(0) + �u(1) + � � �

)
= A(0) + �A(1) + �2A(2) +O(�3) (2.21)

where

A(0) = A
(
u(0)

)
a
(1)
i j =

@ai j
@um

(
u(0)

)
u(1)m

a
(2)
i j =

@ai j

@um

(
u(0)

)
u(2)m +

@2ai j

@um@un

(
u(0)

)
u(1)m u(1)n :

(We adopt the summation convention for repeated indices on m and n.)

We plug in the expansions (2.19) and (2.21) into (2.18), use the change of deriva-

tives (2.20), and collect like powers of � to obtain the governing equations for each

order of u(i).

2.2.1 O(�) system

The governing equations for u(1) are

u
(1)
t + A(0)u(1)x = 0: (2.22)
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The di�erential operator3 represented by the left hand side of (2.22) will govern the

solution to every order of �. Therefore, for (2.18) to describe a hyperbolic system of

conservation laws, the eigenvalues of A(0) must be real and distinct. We will also as-

sume that one eigenvalue is positive and the other is negative|something that can be

accomplished through an appropriate change of independent variables. Furthermore,

the reason that we assumed the steady state u(0) to be a constant is that we can only

�nd a general solution to (2.22) if A(0) is a constant matrix. Under these assumptions,

we are able to diagonalize A(0) by de�ning

� = P�1A(0)P =


�1 0

0 �2


 :

Without loss of generality, let us choose �1 to be the positive eigenvalue and �2 to

be the negative one. We de�ne w (i) = P�1u(i) to be the characteristic dependent

variables, and express (2.22) in these new variables, written out in component form:

w
(1)
1t + �1w

(1)
1x = 0 (2.23a)

w
(1)
2t + �2w

(1)
2x = 0: (2.23b)

These equations imply that w
(1)
1 is a function of � = x � �1t, and w

(1)
2 is a function

of � = x � �2t. Since �1 is positive, that means that w
(1)
1 represents a wave that is

traveling to the \right" in the x-t plane, and w
(1)
2 a wave to the \left."

As we saw in the shallow water 
ow example, the choice of stretched spatial scales

and slow temporal scales for w
(1)
i depends on the arrangement of the solution domain.

If our solution domain is the quarter space, x > 0 and t > 0, then the appropriate

choice of scales is w
(1)
1 = w

(1)
1 (�; ~x; ~t) and w

(1)
2 = w

(1)
2 (�; ~t). We anticipate de�ning

w
(1)
1 as a multipart function representing waves originating from the initial condition

3If there were source terms in (2.17), they would manifest themselves here as an additional matrix

multiplying u
(1), essentially coupling this pair of hyperbolic equations. While some progress could

be made, the general solution would be very complicated as it would involve Bessel functions. See

Section 3.7.2 of [18].
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or waves originating from the boundary condition. The dependence of w(1) on these

slow scales cannot be determined until we consider the equations arising at the next

order of �.

2.2.2 O(�2) system

The equations governing u(2) are

u
(2)
t + u

(1)
~t

+ A(1)u(1)x + A(0)
(
u(2)x + u

(1)
~x

)
= 0; (2.24)

which may be written using characteristic independent and dependent variables as


(�1 � �2)w

(2)
1�

(�2 � �1)w
(2)
2�


+ w

(1)
~t

+ �w
(1)
~x + P�1A(1)P


w (1)

1�

w
(1)
2�


 = 0: (2.25)

(We have used @x ! @� + @� and @t ! ��1@� � �2@� to get the equation above.) If

the �rst component of (2.25) is integrated with respect to �, we will obtain secular

terms taking the form of � premultiplying all terms independent of �. Therefore, all

terms independent of �, like w
(1)
1 (�; ~x; ~t), must be removed from the �rst component

of (2.25). Likewise, all terms independent of � must be removed from the second

component. This leads to the consistency conditions

w
(1)

1~t
+ �1w

(1)
1~x + (b11p11 + c11p21)w

(1)
1 w

(1)
1� = 0; (2.26a)

w
(1)

2~t
+ (b22p12 + c22p22)w

(1)
2 w

(1)
2� = 0; (2.26b)

where

B = P�1 @A

@u1

(
u(0)

)
P and C = P�1 @A

@u2

(
u(0)

)
P:

As mentioned before, these two quasilinear equations admit solutions with shocks.

When shocks form, one must return to the integral formulation of the original conser-

vation laws to determine the correct shock trajectory.
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2.3 Discussion

We now return to the original question posed at the beginning of this chapter: \What

is the e�ect of boundaries on the multiple-scale analysis?" All of the problems solved

in this chapter have the common feature that the O(�) solution can be decomposed

into two waves, each traveling in a di�erent direction (for example L(1) and R(1) for

the wavemaker problem). The wave that is traveling towards the boundary condition

is primarily determined by its initial condition, so it is the wave that travels away from

the boundary that has the responsibility of satisfying the boundary condition. In these

problems, we have used the stretched spatial scale ~x to give this \outbound" wave

the extra freedom to satisfy the boundary condition.

Let's take a closer look at exactly how the extra freedom is achieved. The e�ect

of including ~x �rst presents itself in the consistency conditions. For example, in the

wavemaker problem, the consistency conditions for the wave traveling to the right are

R
(A)
~t

+ R
(A)
~x +

3

4
R(A)R

(A)
� = 0; (2.27a)

and R
(B)
~t

+
3

4
R(B)R

(B)
� = 0: (2.27b)

We don't include ~x in (2.27b) because the water in Region B is primarily in
uenced by

the initial conditions and the appropriate solution procedure for an initial-value problem

is to add the slow temporal scale ~t only. What is the di�erence between (2.27a) and

(2.27b)?

First, we point out that once we convert (2.27a) and (2.27b) back to physical

coordinates, they actually represent very similar equations. Let f (�; ~x; ~t) = R(1) +

�R(2) + � � � in Region A and g(�; ~t) = R(1) + �R(2) + � � � in Region B represent the

wave traveling to the right with the contributions from all orders of � combined.

For equation (2.27a), the variables ~t, ~x , and � are not really independent variables
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because � = x�t = (~x�~t)=�. Since it is not possible to change from three independent

variables to two independent variables, we have to maintain the formalism that � is

independent of ~t and ~x . The correct change of variables requires us to consider two

separate sets of variable changes: �rst the change from ~x and ~t to x and t, then the

change from � = x � t and � = x + t to x and t. When we perform these changes,

(2.27a) becomes

Ft + Fx +
�

2
F (Fx � Ft) +O(�2) = 0; (2.28)

where F (x; t) = f (�; ~x; ~t).

Because (2.27b) only contains two independent variables, the correct change of

variables involves the relationships

~t = �t t = ~t=�

� = x � t x = � + ~t=�:

After some algebra, (2.27b) becomes

Gt + Gx + �GGx +O(�2) = 0; (2.29)

where G(x; t) = G(�; ~x; ~t). Although (2.28) and (2.29) look di�erent, once we use

the fact

1

2
Gt +

1

2
Gx +O(�) = 0

in (2.29), the two equations match up to O(�).

So we see that the addition of ~x does not signi�cantly a�ect the qualitative be-

havior of the outgoing wave because the governing equations with and without ~x are

essentially the same once we revert to physical independent variables. The e�ect of

adding ~x , therefore, can only be seen while maintaining the formalism that � and �

are independent of ~x and ~t. For example, when we used the method of characteristics

to obtain R(A) in (2.12), we considered ~t, ~x , and � to be three independent variables.
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To summarize, the presence of boundaries causes us to add stretched spatial scales

to our the multiple-scale solution so that we have enough degrees of freedom to

satisfy all of the initial and boundary conditions. These stretched spatial scales don't

signi�cantly a�ect the qualitative behavior of the solution, and their bene�t is only

achieved by solving consistency conditions under the assumption that all scales are

independent of one another.
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Chapter 3

PROBLEM DESCRIPTION

In this chapter, we present a standard form for analyzing systems of conservation

laws with rapidly 
uctuating quantities. We begin with a general system of conser-

vation laws and expand about its steady state. This derivation is described in detail

in [19], so we only give the main results here. We also discuss the boundedness of

solutions to a linear problem and how initial conditions must be carefully chosen to

avoid solutions that depend on t� = t=�.

3.1 Perturbation of a system of conservation laws about a steady state

Consider a general system of conservation laws written in divergence form,

pt + qx = s; (3.1)

where the conserved quantity p, the 
ux q, and the source s are all vectors with n

components. Let � be a small, positive parameter: 0 < � � 1. Each pi , qi and si

is a function of the n dependent variables, w1; w2; : : : ; wn, the fast spatial variable

x� = x=�, and the small parameter �. In other words,

pi = pi(w1; w2; : : : ; wn; x
�; �):

We assume that all the dependent variables are themselves functions of x and t along

with any other stretched scales (x�, ~x = �x , or ~t = �t) that we desire. Furthermore,

the dependent variables should be continuous functions or else the general system of

conservation laws (3.1) must be written in its integral form.
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If we assume that all pi , qi and si are O(1) as � ! 0 and that the dependence of

the 
ux on the fast spatial variable is weak,

qx� = �m(w1; : : : ; wn; x
�; �) = O(�);

then the dependent variables are governed by the system of equations

wt + R(w; x�; �)wx = r(w; x�; �) (3.2)

where R = P�1Q, r = P�1(s�m), and P and Q are the Jacobian matrices

P =
@(p1; : : : ; pn)

@(w1; : : : ; wn)
; and Q =

@(q1; : : : ; qn)

@(w1; : : : ; wn)
:

The steady state solution to (3.2), which we denote by v(x�; �), is governed by

the quasilinear system of ordinary di�erential equations

R(v; x�; �)v0 = �r(v; x�; �);

and can always be obtained by a regular perturbation expansion [19]. Let u be a small

perturbation to this steady state. We substitute w = v + �u into (3.2) and, after

much algebra, obtain the governing equation for u,

ut + A(x�)ux + B(x�)u = � [C(u; x�)u+D(u; x�)ux ] +O(�2): (3.3)

Assuming that the steady state can be expanded as

v(x�; �) = v(0)(x�) + �v(1)(x�) + �2v(2)(x�) +O(�3);

the components of each matrix in (3.3) are

ai j(x
�) =ri j(v

(0)(x�); x�; 0)

bi j(x
�) =�

@ri
@wj

(
v(0)(x�); x�; 0

)
+
@rim
@wj

(
v(0)(x�); x�; 0

) dv (1)m

dx�

ci j(u; x
�) =

@2ri

@wj@�

(
v(0)(x�); x�; 0

)
+

@2ri

@wj@wm

(
v(0)(x�); x�; 0

) (
v (1)m (x�) + 1

2
um
)

+
@rim
@wj

(
v(0)(x�); x�; 0

) dv (2)m

dx�

di j(u; x
�) =�

@ri j

@�

(
v(0)(x�); x�; 0

)
�

@ri j

@wm

(
v(0)(x�); x�; 0

) (
v (1)m (x�) + um

)
;
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where we have adopted the summation convention over repeated indices on m.

We will use the standard form (3.3) repeatedly throughout this paper, as it gives

us a uni�ed way of analyzing systems of hyperbolic conservation laws. In particular,

we only consider pairs of conservation laws, so all of the matrix coeÆcients in (3.3)

are 2 � 2 matrices. We do not consider systems of three or more conservation laws

to avoid the possibility of resonant interactions between the dependent variables for

certain periodic initial conditions [17].

Furthermore, all of our examples will involve periodic x�-
uctuations in (3.3). There

is nothing that prevents us from assuming any other type of 
uctuations|the only

requirement is that the 
uctuating functions are well-behaved so that the averaging

operators de�ned in Appendix A can be applied to them. Although choosing periodic


uctuations makes the algebra a little simpler, it allows for the possibility of resonant

interactions between waves traveling through the medium and the medium itself. We

give an example of such a situation in the next section.

3.2 The linear problem

Since the nonlinear terms in (3.3) are premultiplied by �, it is the linear problem

ut + A(x�)ux + B(x�)u = 0; (3.4)

that governs the basic behavior of its solutions. That is why it is important to �rst

look carefully at (3.4) before studying the general nonlinear problem.

Since the eigenvalues of A(x�) are the speeds at which information propagates

through the system, for (3.4) to describe a hyperbolic system of partial di�erential

equations, the matrix A(x�) must have real and distinct eigenvalue for all x�. (Hyper-

bolic problems with distinct eigenvalues are sometimes called \strictly hyperbolic.")

Let's also assume that one of the eigenvalues is always positive and one is always

negative. The e�ect of this assumption is to turn a boundary like x = 0 into a space-
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like arc, a contour in the x-t plane that only has one characteristic emanating from it

in positive time. Therefore, a well-posed boundary-value problem can only have one

condition on one linear combination of the dependent variables at x = 0. In contrast,

the solution boundary t = 0 is a time-like arc because it has two characteristics

emanating from it in positive time. The reason for making this assumption about

the eigenvalues will become clearer when we highlight the missing boundary condition

diÆculty in Chapter 4. We will see that if two boundary conditions can be speci�ed at

x = 0, there is no missing boundary condition diÆculty. If no boundary conditions can

be speci�ed at x = 0 (for example, if both eigenvalues of A are negative), then we

are e�ectively solving an initial-value problem since boundary conditions never a�ect

the solution in its solution domain. For convenience, we assume that the boundary

conditions are always speci�ed at x = 0, something that can always be achieved

through an appropriate change of independent variables.

3.3 Conditions for bounded solutions of a special linear case

We now turn to a special linear case,

ut + A(x�)ux = 0; (3.5)

with

A�1(x�) =


1 + � sin�x� 2 + � cos�x�

2 + 
 cos�x� 1 + Æ sin�x�


 ; (3.6)

where �, �, 
, and Æ are all real constants. This problem was �rst suggested by

Kevorkian and Bosley in [19] as an example in which the cumulative e�ect of the 
uc-

tuations in A(x�) is \negative di�usion" (solution pro�le steepens instead of 
attens).

In this section we establish some preliminary facts about this problem as we intend to

make use of it in later chapters. We will show that the presence of di�usion in the

homogenized (averaged) behavior of (3.5) implies exponential growth of the solution.
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Unlike the initial-value problem for the scalar equation ut + a(x�)ux = 0, or the

constant coeÆcient matrix equation ut +Aux = 0, whose solutions never grow larger

than their initial conditions, equation (3.5) with periodic A(x�) matrices can have

solutions that grow exponentially in time. In this section, we will try to further analyze

the mechanism that causes solutions to grow exponentially.

Because (3.5) is a linear problem, we can use the principle of superposition, which

reduces the task of describing how an arbitrary initial condition propagates in time down

to an examination of how each individual trigonometric mode evolves. Superposition

also ensures that all of the periodic modes initially present do not directly interact with

each other; instead, we will see that the primary feature of (3.5) is the interaction

of waves with periodic medium represented by A(x�). The functions in A(x�) have

a period of 2=� and wavenumber �=�. The product of A(x�) and ux in (3.5) causes

a wave with wavenumber �m to excite all waves with wavenumber �m(1 + i=�) for

any integer i . A complete analysis of the growth and decay of these modes would

therefore involve studying an in�nite system of ordinary di�erential equations governing

the amplitudes of these modes.

As a starting point to understanding the behavior of (3.5), we follow [19] by sup-

posing that the solution is of the form

u =


v1(t) sin(m�x) + v2(t) cos(m�x) + v5(t) sin(n�x) + v6(t) cos(n�x)

v3(t) sin(m�x) + v4(t) cos(m�x) + v7(t) sin(n�x) + v8(t) cos(n�x)


 ; (3.7)

where n = 1=��m. When we plug ansatz (3.7) into (3.5) and ignore all other modes

that are generated except for those with wavenumbers m� and n�, we obtain the

system of ordinary di�erential equations dv=dt = Mv, where v = [v1(t) � � � v8(t)]
T is
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the vector of amplitudes and

M�1 =
1

�




0 � 1
m

0 � 2
m

� �
2m

0 0 � �
2m

1
m

0 2
m

0 0 �
2m

� �
2m

0

0 � 2
m

0 � 1
m

0 � 

2m

� Æ
2m

0

2
m

0 1
m

0 � 

2m

0 0 Æ
2m

� �
2n

0 0 � �
2n

0 �1
n

0 �2
n

0 �
2n

� �
2n

0 1
n

0 2
n

0

0 � 

2n

� Æ
2n

0 0 �2
n

0 �1
n

� 

2n

0 0 Æ
2n

2
n

0 1
n

0




: (3.8)

The solution (3.7) will remain bounded if and only if none of the eigenvalues of

M have positive real part, or equivalently, if none of the eigenvalues of �M�1 have

positive real part. The Routh-Hurwitz conditions, used to discriminate the roots of

a polynomial, can give us some insight to the properties of these eigenvalues. The

characteristic polynomial of �M�1 is �(�) = det (�I � �M�1) = �8 + a7�
7 + � � � +

a1� + a0: We don't display the constants ai to save space. All of the eigenvalues of

�M�1, which are the roots of �(�), have negative real part if and only if all of the

Hurwitz determinants are positive (see [22] and [4]). The Hurwitz determinants are

the determinants of the eight principle submatrices of the matrix


a7 1 0 0 0 0 0 0

a5 a6 a7 0 0 0 0 0

a3 a4 a5 a6 0 0 0 0

a1 a2 a3 a4 a5 0 0 0

0 a0 a1 a2 a3 a4 0 0

0 0 0 a0 a1 a2 a3 0

0 0 0 0 0 a0 a1 a2

0 0 0 0 0 0 0 a0




: (3.9)
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It so happens that the third Hurwitz determinant (the determinant of the submatrix

of (3.9) using the �rst three rows and columns) is

�
(�� Æ)2(� � 
)2(m � n)2

m4n4
:

Because this Hurwitz determinant is nonpositive, a necessary condition for bounded

solutions (3.7) is that (�� Æ)(� � 
) = 0. Unfortunately, it turns out that once this

condition is satis�ed, all the Hurwitz determinants vanish and nothing else can be said

about the real parts of the eigenvalues of ��M�1; that is why the Routh-Hurwitz

analysis produces (�� Æ)(� � 
) = 0 only as a necessary condition.

The quantity (�� Æ)(� � 
) is also directly related to the di�usion coeÆcient for

the homogenized behavior of (3.5). Using multiple-scale analysis, one can show that

the cumulative e�ects of the 
uctuations in A(x�) are described by the equations

@w
(0)
1

@~t
=

(�� Æ)(� � 
)

108�

@2w
(0)
1

@�2
(3.10a)

@w
(0)
2

@~t
=

3(�� Æ)(� � 
)

4�

@2w
(0)
2

@�2
: (3.10b)

In this pair of equations, w
(0)
1 and w

(0)
2 represent the leading-order homogenized be-

havior of (3.5), written in characteristic independent and dependent variables. The

most important feature of equations (3.10a) and (3.10b) is that they are linear heat

equations and the sign of (� � Æ)(� � 
) determines whether w
(0)
1 and w

(0)
2 di�use

positively (spread outwards) or negatively (ever-increasing gradients). In particular,

when (�� Æ)(�� 
) is negative these equations are ill-posed, since waves with di�er-

ent frequencies grow exponentially with di�erent rates. It is therefore not surprising

that the quantity (�� Æ)(� � 
) is related to the boundedness of solutions to (3.5).

All of this information is backed up by the following informal numerical experiment.

Choose � = 0:1, then repeat the following sequence of steps as many times as desired.

1. Randomly choose the four parameters �, �, 
, and Æ from the interval [�1; 1]

for the matrix A(x�) in (3.6).
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2. Generate the matrix �M�1 and calculate its eigenvalues for a suitable range of

m. (If you imagine solving (3.5) on a periodic domain, then one only needs

to check the values of m representing waves that satisfy the periodic boundary

conditions.) Divide the eigenvalues into � to get the eigenvalues of M.

3. Out of all of the eigenvalues of M, select the one whose real part is the most

positive and one whose real part is the most negative.

4. Plot the value of (�� Æ)(� � 
) along with both extreme real parts.

In Figure 3.1, we have plotted 1; 000 min/max pairs for 1; 000 randomly chosen sets

of the four parameters �, �, 
, and Æ. The eigenvalues with positive real parts are

plotted above the dotted line, the eigenvalues with negative real parts below. We �nd

that the real parts of the eigenvalues vanish exactly when the quantity (�� Æ)(�� 
)

also vanishes. The �gure suggests that (� � Æ)(� � 
) = 0 is both a necessary and

suÆcient condition for all the eigenvalues of M to be purely imaginary|a slightly

stronger statement than we could obtain from the Routh-Hurwitz conditions.

Let us keep in mind that all of this analysis on the system of ordinary di�erential

equations v0 = Mv is only a �rst approximation to the full behavior of (3.5) because

solutions of the form (3.7) don't satisfy the partial di�erential equation (3.5) exactly.

Using a spectral numerical technique (see Appendix B), we numerically solve (3.5)

with A(x�) de�ned by (3.6) in the domain �1 < x < 1, using periodic boundary

conditions. We chose � = 0:1. Figure 3.2 displays the results of these numerical

simulations for four di�erent choices of the four constants �, �, 
, and Æ at t = 2000.

The initial conditions for all four cases are

u(x; 0) =


sin(�x)

0


 ;

which is shown in pane (a). In panes (b){(d), we choose three di�erent sets of
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Figure 3.1: Informal numerical experiment to verify the condition (�� Æ)(�� 
) = 0.

parameters with � = Æ or � = 
 or both. Changes in these four parameters a�ect

the solution greatly at t = 2000, but the solution remains bounded between �1. In

pane (e), we show the numerical solution for a case in which (� � Æ)(� � 
) 6= 0.

Notice from the vertical scales that the solution grows exponentially in this case. To

summarize, we observe that the numerical solution stays bounded only when � = Æ or

� = 
. Even though this anecdotal evidence falls short of a proof, it suggests that we

should restrict ourselves to instances of (3.6) in which (�� Æ)(� � 
) = 0.

We repeated the numerical simulation of the exponentially growing case (� = 0,

Æ = :4, � = 0:1, 
 = �0:2) using CLAWPACK with a spatial step size of 0:0005.

Figure 3.3 shows this numerically calculated solution at t = 200.
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�1
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3� 109

�3� 109

u1
u2

(a) Initial conditions for all cases

(b) � = Æ = :5, � = 
 = �0:1 (c) � = Æ = :5, � = 0:5, 
 = �0:4

(d) � = :5, Æ = 0, � = 
 = 0:5 (e) � = 0, Æ = :4, � = 0:1, 
 = �0:2

Figure 3.2: Initial condition and numerical solution to the test problem of Kevorkian

and Bosley with four di�erent sets of parameters at t = 2000 using a spectral tech-

nique.
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�1
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5� 106

5� 106

u1

u2

Figure 3.3: Numerical solution to the test problem of Kevorkian and Bosley at t = 200

using CLAWPACK.

There is an interesting connection between Figures 3.3 and 3.2(e), which represent

the same unstable choice of �, �, 
, Æ. Ignoring the fact the two �gures depict

solutions at di�erent times, notice that the solution calculated by CLAWPACK is

overwhelmed by a wave with wavenumber 7� while the solution calculated by the

spectral technique shows that the wave with wavenumber � dominates. Why is there

a discrepancy between these two graphs, and which is correct?

The answer begins with the fact that the real parts of the eigenvalues of the matrix

M, whose inverse is de�ned by (3.8), are most negative when m = 7. Even though the

initial condition does not contain any waves with wavenumber 7�, because of small

truncation errors, a �nite volume or �nite di�erence method will always introduce

waves of every wavenumber. In our simulation, these small errors are magni�ed until

they overwhelm the solution. Increasing the spatial resolution delays, but does not

prevent, exponential growth of the solution [19].
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In contrast, our spectral numerical technique works by solving a system of ordinary

di�erential equations for all the modes in the solution. If the amplitude of the mode

with wavenumber 7� is initially zero and if this wave is not excited by any other waves,

then the amplitude of this wave will remain zero for all time. The A(x�) matrix de�ned

in (3.6) has the feature that it contains only periodic functions with wavenumber �=�.

As a result, A(x�) couples all modes in the solution whose wavenumbers are apart by an

exact multiple of �=�. In other words, if � = :1, then all the modes with wavenumbers

: : : ;�13�;�3�; 7�; 17�; 27�; : : : are coupled. None of these modes are present in

the initial conditions, so none of them will appear in the solution.

These numerical experiments suggest two reasons why we should only study (3.5)

with A(x�) de�ned in (3.6) when (� � Æ)(� � 
) = 0. First, to compare our ana-

lytic solutions with numerical results we need reliable numerical results|results that

don't signi�cantly change because of changes in the step-size, �x . Second, prob-

lems in which waves of di�erent wavenumbers grow exponentially at di�erent rates are

inherently ill-conditioned. In other words, we are not guaranteed that two solutions

corresponding to two initial conditions that are close to one another will remain close

to one another as they evolve in time.

To summarize the results in this section, we have proved that for the example

(3.6) devised by Kevorkian and Bosley, nonzero (� � Æ)(� � 
) leads to solutions

that grow exponentially in time. These solutions grow unbounded because of res-

onant interactions between waves traveling through the medium and medium itself.

Furthermore, we have numerical evidence to suggest that (� � Æ)(� � 
)=0 is nec-

essary and suÆcient for bounded solutions. Although Kevorkian and Bosley showed

that di�usion (even \negative" di�usion) is a real e�ect that must be accounted for

when (� � Æ)(� � 
) is nonzero, they did not realize that such solutions would grow

exponentially. From this point on, we will assume (� � Æ)(� � 
) = 0 whenever we

refer to this example.
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3.4 Choosing the initial conditions for a t�-independent solution

In preparation for the analysis in the next chapter, we now show how to choose initial

conditions for (3.3) so that the solution is independent of t� = t=�.

Why is it important to have solutions that are independent of t�? If the functions

represented by A, B, C and D in (3.3) depend on x , the natural spatial scale of the

problem, a closed-form solution to (3.3) would be out of reach. It is the assumption

that these functions depend on x� that allows us to make some progress through

multiple-scale analysis. Likewise, if the solution to (3.3) depends on t�, then it is

possible to use a simple change of variables to rescale the problem so that the natural


uctuations are on the same scale as the 
uctuations of the coeÆcient matrices.

Therefore, it is important to ensure that solutions to (3.3) are independent of the fast

temporal scale t� = t=�.

In [30], Santosa and Symes tacitly assume that their solution is independent of

the fast temporal scale, although not in the context of multiple-scale analysis. Their

analysis of the linear wave equation

�(x�)wtt � (k(x�)wx)x = 0; (3.11)

where w(x; t; �) is the displacement, the density and bulk modulus of the medium,

�(x�) and k(x�), involves a Bloch wave expansion|essentially a spectral decomposi-

tion of the partial di�erential operator for (3.11) that recasts the initial-value problem

as an eigenvalue problem. They express their solution as

w(x; t; �) =

∫
jk j�2�

g(k) exp(ikx � i!(k)t)dk +O(�);

where !(k) are the eigenvalues associated with each Bloch wave. The important

assumption here is that k , a scaled wavenumber, is restricted by the integration limits.

This assumption that the solution is band-limited achieves the same result as assuming

that the solution is independent of the fast temporal scale t�.
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So how does one ensure that the solution is independent of t�? According to

Kevorkian and Bosley, only problems with special initial conditions lead to solutions

without high-frequency temporal oscillations [19]. Ironically, it is the careful choice

of the x�-dependence of the initial conditions that leads to t�-independent solutions.

Determining the necessary x�-dependence is easy|from the calculated multiple-scale

solution, one sets t = 0 to see what initial conditions are necessary to support that

solution. We will see that the averaged (or x�-independent) behavior of the initial

conditions may be chosen arbitrarily, but the x�-dependence may not. Typically, the

initial conditions will be of the form

u(x; 0; �) = h(x ; �) = h(0)(x) + �h(1)(x�; x) + � � � :

Notice that, as expected, the leading-order initial conditions must be independent of

x� for us to make any progress on the solution to (3.3). The x�-dependencies of all

higher order terms in the initial conditions cannot be arbitrarily chosen. Practically

speaking, this means that any solution that we obtain using multiple scales is actually

the solution to a nearby problem; the smaller � gets, the better our approximation

becomes.

Finally, we also cite the �nding that discontinuous initial data lead to solutions

that are x�- and t�-dependent in the region of in
uence of the discontinuity [19]. This

�nding means we should also ensure that our initial and boundary data are continuous

functions and that they match up correctly at any places in the solution domain where

they meet. Furthermore, problems whose solutions exhibit shocks require the use of

x� and t� after the time of shock formation.
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Chapter 4

MULTIPLE-SCALE ANALYSIS

In this chapter, we apply multiple-scale analysis to problems in the standard form

(3.3). We begin by analyzing a linear problem to demonstrate the multiple-scale

method, the diÆculty of the missing boundary conditions, and how to overcome it.

The ideas from this linear problem are then applied to more general nonlinear systems

of conservation laws.

4.1 The linear problem with B = 0

Before we analyze the general nonlinear problem, we begin by studying the the linear

problem

ut + A(x�)ux = 0; (4.1)

which corresponds to the linear part of (3.3) with B(x�) = 0. This equation is insight-

ful because it demonstrates all of the main ideas of this chapter. We consider two

problems �tting this mathematical description: the linear wave equation with rapidly

varying density and bulk modulus, and a nonphysical test case devised by Kevorkian

and Bosley [19].

Written as a second-order partial di�erential equation, the linear wave equation is

�(x�)wtt � (k(x�)wx)x = 0; (4.2)

where w(x; t; �) is the displacement. Here, we allow the density and bulk modulus

of the medium, �(x�) and k(x�), to vary rapidly on the x� = x=� scale. Changing
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variables using u1 = wt and u2 = �kwx puts (4.2) in the form of (4.1) with

Awaves(x
�) =


 0 1=�(x�)

k(x�) 0


 : (4.3)

The description of linear (small amplitude) acoustic waves in a stationary gas is one of

many applications of the linear wave equation. In that context, u1 and u2 stand for the

velocity and pressure, respectively, and the speed of sound is c(x�) =
√
k(x�)=�(x�).

In [19], Kevorkian and Bosley examine (4.1) with

A�1test(x
�) =


1 + � sin(�x�) 2 + � cos(�x�)

2 + 
 cos(�x�) 1 + Æ sin(�x�)


 ;

where �, �, 
 and Æ are real constants. Following the discussion in Section 3.3, we

choose (� � Æ)(� � 
) = 0 to avoid solutions that grow exponentially. For both the

linear wave equation and the test problem, we will see that the primary e�ect of the


uctuations in A(x�) is the addition of a small amount of dispersion to the solution

dynamics.

The parameters in both problems must be chosen so that they describe hyperbolic

problems (the eigenvalues must be real and distinct). Furthermore, as discussed in

Section 3.2, we want to pick k(x�), �(x�), �, �, 
, and Æ so that one of the eigenvalues

is always positive and the other always negative. For the linear wave equation, as long

as k(x�) and �(x�) are strictly positive functions, this will be true. There are no simple

conditions to ensure that the eigenvalues of Atest follow this pattern|the easiest thing

to do is to pick speci�c values and check the eigenvalues directly.

Our solution procedure consists of

1. expanding u into an asymptotic series containing all of the spatial and temporal

scales that we will use throughout the problem,

2. using averaging operators to separate terms that depend on x� from the terms

that do not,
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3. removing potentially secular terms from the x�-homogenized (averaged) equa-

tions to produce long-term evolution equations (consistency conditions),

4. and solving the long-term evolution equations, using recovered boundary infor-

mation, if necessary.

This analysis results in a qualitative understanding of the long-term behavior and

explicit expressions for the averaged (homogenized) solution.

This method di�ers slightly from that outlined by Kevorkian and Bosley in [19], in

which their asymptotic expansion for u only incorporates x�, x , and t. The resulting

homogenized equations tell us the cumulative e�ects of the 
uctuations in A(x�),

but to actually solve the homogenized equations one must expand the solution with

the desired slow temporal and stretched spatial scales. We merely incorporate both

expansions from the beginning.

Choosing the correct scales to include in our multiple-scale analysis is the key

to the whole problem. As the goal of homogenization theory is to characterize the

macroscopic behavior of media with microscopic structure, we anticipate that the

cumulative e�ects of the 
uctuations of the media on the x� = x=� scale will have

long-term e�ects on the solution. If we want to capture these e�ects, we need to

include some combination of slow temporal scales and stretched spatial scales into our

multiple-scale analysis.

Whether to use slow temporal scales, stretched spatial scales, or both, is largely

determined through trial and error|if there are not enough degrees of freedom to

satisfy all of the initial and boundary conditions, add more scales. One general guideline

is that initial value problems typically require slow temporal scales only. The presence of

boundaries may require us to add stretched spatial scales, as we saw in the wavemaker

problem in Section 2.1.

Precisely how slow or stretched our scales should be is largely determined by the
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type of behavior we wish to capture. The long-term evolution equation arises from the

removal of potentially secular terms and it tells us how the solution depends on the

slow or stretched scales. Therefore, including di�erent slow and stretched scales leads

to di�erent long-term evolution equations. Later, we will see that if the cumulative

e�ect of the 
uctuations of the media is di�usion, then terms with two derivatives in

t will appear in the x�-homogenized equations at O(�); the ~t = �t or ~x = �x scale

must be used to capture these behaviors. A cumulative dispersive e�ect, characterized

by three derivatives in t and/or x , shows up at the O(�2) system of x�-homogenized

equations, and one must include either the slow temporal scale t̂ = �2t or the stretched

spatial scale x̂ = �2x to see this e�ect. In general, using �nx or �nt enables us to obtain

a long-term evolution equation from the O(�n) system of x�-homogenized equations.

In this problem, we wish to take into account the cumulative dispersive e�ects of

the 
uctuations in A(x�), so we use the asymptotic expansion

u(x; t; �) = u(0)(x�; x; t; t̂) + �u(1)(x�; x; t; t̂) + � � � :

We don't include any stretched spatial scales because they aren't necessary in a linear

problem like (4.1). With this choice of scales, derivatives with respect to x and t

become

@

@x
! ��1

@

@x�
+

@

@x
@

@t
!

@

@t
+ �2

@

@t̂
:

(This change of variables is actually an abuse of notation|to eliminate confusion, one

should really use x to stand for the original spatial scale, and some other variable like

y = x to stand for the same scale after the other spatial scales are introduced.) We

plug

ut ! u
(0)
t + �u

(1)
t + �2(u

(0)

t̂
+ u

(2)
t ) + � � � and

ux ! ��1u
(0)
x� + (u(0)x + u

(1)
x� ) + �(u(1)x + u

(2)
x� ) + �2(u(2)x + u

(3)
x� ) + � � � :
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into the original equation (4.1) and separate terms according to their associated power

of �.

4.1.1 O(��1) system

When we collect all terms that are proportional to ��1, the system of equations

A(x�)u
(0)
x� = 0

arises. Since the eigenvalues of A(x�) are never zero, A(x�) may be inverted to obtain

u
(0)
x� = 0. In other words, the leading-order behavior of the solution does not depend

on the fast spatial scale. We follow the convention that all quantities independent of

the fast spatial scale are underlined. For example, we denote u(0) = u(0)(x; t; t̂).

4.1.2 O(1) system

The O(1) system of equations,

u
(1)
x� = �A�1u(0)t � u(0)x ; (4.4)

may be easily integrated with respect to x�, but before we do this we need to separate

the terms that depend on the fast spatial scale from the terms that do not. When

x�-independent terms are integrated with respect to x�, terms proportional to x� arise.

Such terms, examples of so-called secular terms, are not allowed because they cause

the asymptotic expansion to become nonuniform for large x�. In other words, as x�

increases, the terms in the asymptotic expansion outgrow their assigned orders of

magnitude.

To separate the x�-dependent terms from the x�-independent terms, we use the

averaging operators de�ned in Appendix A. Setting the average (x�-independent) part

of the right-hand side of (4.4) to zero, we get the x�-homogenized equation

u
(0)
t +

〈
A�1

〉�1
u(0)x = 0: (4.5)
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The multiple-scale analysis shows that the correct description of the average behavior

of our system is obtained by replacing the 
uctuating A(x�) with the constant matrix

hA�1i
�1
; the naive approach of replacing A(x�) with hA(x�)i is incorrect. In the

context of the linear wave equation,

〈
A�1waves

〉�1
=


 0 1= h�(x�)i

h1=k(x�)i�1 0


 :

It is interesting that while the density is replaced by its average value, the bulk modulus

must be replaced by its harmonic average to produce the correct averaged behavior.

The remaining (
uctuating) part of the O(1) system is

u
(1)
x� = �fA�1(x�)gu(0)t ;

which, when integrated, becomes

u(1) = �
[[
A�1(x�)

]]
u
(0)
t + u(1)(x; t; t̂); (4.6)

where u(1)(x; t; t̂) is the constant of integration.

4.1.3 O(�) system

The governing equations for u(1) are

u
(1)
t + A(x�)

(
u(1)x + u

(2)
x�

)
= 0:

We plug in (4.6) and rearrange to get

u
(2)
x� = �A�1u(1)t � u(1)x +

[[
A�1

]]
u
(0)
tx + A�1

[[
A�1

]]
u
(0)
tt :

The removal of secular terms produces the equation

u
(1)
t +

〈
A�1

〉�1
u(1)x =

〈
A�1

〉�1 〈
A�1

[[
A�1

]]〉
u
(0)
tt : (4.7)
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The remaining (
uctuating) part of the O(�) system is

u
(2)
x� = �fA�1gu(1)t +

[[
A�1

]]
u
(0)
tx + fA�1

[[
A�1

]]
gu(0)tt ;

which, when integrated, becomes

u(2) = �
[[
A�1

]]
u
(1)
t +

[[[[
A�1

]]]]
u
(0)
tx +

[[
A�1

[[
A�1

]]]]
u
(0)
tt + u(2)(x; t; t̂); (4.8)

where u(2)(x; t; t̂) is the constant of integration.

4.1.4 O(�2) system

Plug in (4.6) and (4.8) into the O(�2) system,

u
(0)

t̂
+ u

(2)
t + A(x�)

(
u(2)x + u

(3)
x�

)
= 0;

and rearrange to get

u
(3)
x� =� u(2)x � A�1

(
u
(0)

t̂
+ u

(2)
t

)
+ A�1

[[
A�1

]]
u
(1)
tt � A�1

[[[[
A�1

]]]]
u
(0)
ttx � A�1

[[
A�1

[[
A�1

]]]]
u
(0)
ttt

+
[[
A�1

]]
u
(1)
tx �

[[[[
A�1

]]]]
u
(0)
txx

�
[[
A�1

[[
A�1

]]]]
u
(0)
ttx :

The removal of secular terms produces this equation governing u(2),

u
(0)

t̂
+ u

(2)
t +

〈
A�1

〉�1
u(2)x =

〈
A�1

〉�1 〈
A�1

[[
A�1

]]〉
u
(1)
tt

�
〈
A�1

〉�1 〈
A�1

[[[[
A�1

]]]]〉
u
(0)
ttx

�
〈
A�1

〉�1 〈
A�1

[[
A�1

[[
A�1

]]]]〉
u
(0)
ttt :

(4.9)

Integrate the remaining part of the O(�2) system to get

u(3) =�
[[
A�1

]] (
u
(0)

t̂
+ u

(2)
t

)
+
[[
A�1

[[
A�1

]]]]
u
(1)
tt

�
[[
A�1

[[[[
A�1

]]]]]]
u
(0)
ttx �

[[
A�1

[[
A�1

[[
A�1

]]]]]]
u
(0)
ttt

+
[[[[

A�1
]]]]

u
(1)
tx �

[[[[[[
A�1

]]]]]]
u
(0)
txx

�
[[[[

A�1
[[
A�1

]]]]]]
u
(0)
ttx + u(3)(x; t; t̂):
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This process of removing terms independent of x� before integrating can be re-

peated to as high as degree of � as desired. However, we will soon see that with our

current choice of scales (in particular, t̂ = �2t), it is not necessary to proceed any

further.

4.1.5 Choosing initial conditions for t�-independent solutions

Now that we have expressions for u(0), u(1), and u(2), we can answer the question

of how to choose initial conditions so that the solution to (4.1) is independent of

t� = t=�. (See discussion in Section 3.4.) We simply substitute t = 0 into each of

these expressions to see what sorts of initial conditions support our assumption that

t� is absent from the solution.

Suppose the initial conditions have the multiple-scale expansion

u(x; 0; �) = h(x ; �) = h(0)(x) + �h(1)(x�; x) + �2h(2)(x�; x) + � � � :

We write the leading term in this expansion as h(0)(x) because u(0)
∣∣
t=0

= h(0) and

u(0) is independent of x�.

Likewise, matching u(1)
∣∣
t=0

= h(1) using (4.6) gives

u(1)
∣∣
t=0

= �
[[
A�1

]]
u
(0)
t

∣∣∣
t=0

+ u(1)
∣∣
t=0

:

To calculate u
(0)
t

∣∣∣
t=0

, we use (4.5) to obtain

u
(0)
t

∣∣∣
t=0

= �
〈
A�1

〉�1
u(0)x

∣∣
t=0

= �
〈
A�1

〉�1 dh(0)(x)
dx

:

Therefore, we must choose

h(1)(x�; x) =
[[
A�1

]] 〈
A�1

〉�1 dh(0)(x)
dx

+ h(1)(x);

where h(1)(x), the average part of h(1), may be chosen arbitrarily, but the 
uctuating

(x�-dependent) part may not.
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The same analysis produces this restriction on h(2)(x; x�),

h(2)(x; x�) =�
[[
A�1

]] 〈
A�1

〉�1 〈
A�1

[[
A�1

]]〉 〈
A�1

〉�2 d2h(0)(x)

dx2

+
([[

A�1
[[
A�1

]]]] 〈
A�1

〉�2
�
[[[[

A�1
]]]] 〈

A�1
〉�1) d2h(0)(x)

dx2

+
[[
A�1

]] 〈
A�1

〉�1 dh(1)(x)
dx

+ h(2)(x);

where h(2)(x) may be speci�ed arbitrarily.

In practice, the average part of the higher-order initial conditions is set to zero

because for all physically relevant problems, initial data can be captured in the leading-

order initial conditions, h(0)(x)|there is no need to include corrections at higher orders

of �, except for those necessary for t�-independent solutions.

4.1.6 Solving the homogenized equations for an initial-value problem

All of the analysis done up to this point is applicable to problems with and without

boundary conditions. Before we tackle the diÆculties that boundaries add to this

problem, we �rst demonstrate that our solution procedure works for the initial-value

problem. We are most concerned about whether we can generate homogenized equa-

tions that accurately describe the long-term evolution of equation (4.1).

These long-term evolution equations arise while solving the x�-homogenized equa-

tions from each order of �. It is only now that we begin to see how di�erent A(x�) lead

to di�erent types of long-term evolution equations, and necessitate di�erent choices

of slow temporal or stretched spatial scales.

The x�-homogenized equation from the O(1) system of equations, (4.5), is

u
(0)
t +

〈
A�1

〉�1
u(0)x = 0:

To solve this system, diagonalize hA�1i
�1

= P�P�1 so that

� =


�1 0

0 �2


 :
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Without loss of generality, we choose �1 to be the positive eigenvalue, and �2 to be

the negative one.

Making the substitution u(i) = Pw(i) (the w(i) variables are called the characteristic

dependent variables) and multiplying on the left by P�1, we get

w
(0)
t + �w(0)

x = 0;

which can be written out as

w
(0)
1t + �1w

(0)
1x = 0;

w
(0)
2t + �2w

(0)
2x = 0:

These equations imply that w
(0)
1 = w

(0)
1 (�; t̂), and w

(0)
2 = w

(0)
2 (�; t̂), where � = x��1t

and � = x � �2t are called the characteristic independent variables. The dependence

of w(0) on the slow time scale, t̂, cannot be determined until we consider the equations

arising at higher orders.

We rewrite the O(�) system of x�-homogenized equations (4.7) in terms of the

characteristic dependent variables to get

w
(1)
t + �w(1)

x = Nw
(0)
tt ;

where N = P�1 hA�1i
�1 〈

A�1
[[
A�1

]]〉
P . Recalling that w

(0)
1 doesn't depend on � and

w
(0)
2 doesn't depend on �, and using the facts @x ! @� + @� and @t ! ��1@� � �2@�,

we can rewrite the equation above using characteristic independent variables:
(�1 � �2)w

(1)
1�

(�2 � �1)w
(1)
2�


 = N


�2

1w
(0)
1��

�2
2w

(0)
2��


 : (4.10)

Before we integrate to solve for w(1), we must remove terms independent of � in

the �rst component of (4.10), terms independent of � in the second component of

(4.10). These terms are premultiplied by the diagonal entries of N .
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For the linear wave equation,

Nwaves =


 0 hk�1i

�1=2
h�i�1=2

〈
k�1

[[
�
]]〉

hk�1i
�1=2

h�i�1=2
〈
�
[[
k�1

]]〉
0


 ;

(in this calculation we have used the fact that
〈
�
[[
k�1

]]〉
= �

〈
k�1

[[
�
]]〉
, which is

proved in Appendix A), and for the test case devised by Kevorkian and Bosley,

Ntest =
1

12�


 (�� Æ)(� � 
) (�� Æ)(� + 
)

3(�� Æ)(� + 
) 3(�� Æ)(� � 
)


 :

Recalling from our discussion in Section 3.3 that (� � Æ)(� � 
) = 0, we see that in

both examples the diagonal entries of N are zero. As there is no need to remove any

potentially secular terms, we can integrate (4.10) to obtain

w
(1)
1 =

n12

�1 � �2

�2
2w

(0)
2� + v

(1)
1 (�; t̂); (4.11a)

w
(1)
2 =

n21
�2 � �1

�2
1w

(0)
1� + v

(1)
2 (�; t̂); (4.11b)

where v
(1)
1 and v

(1)
2 are integration constants.

If the diagonal entries of N were nonzero, we would need to eliminate some terms

from (4.10) by introducing either ~t = �t or ~x = �x into our asymptotic expansion.

This added degree of freedom would give us the ability to eliminate those potential

secular terms by forcing w
(0)
1 and w

(0)
2 to satisfy two constant-coeÆcient di�usion

equations. So now we see that N having zero diagonal entries means that ~t = �t is

absent from our asymptotic expansion, and that the long-term behavior of the solution

does not exhibit di�usion.

Finally, we rewrite equation (4.9), the x�-homogenized equation from the O(�2)

system, using characteristic dependent variables to obtain

w
(0)

t̂
+w

(2)
t + �w(2)

x = Nw
(1)
tt �Rw

(0)
ttt � Sw

(0)
ttx ;
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where

R = P�1
〈
A�1

〉�1 〈
A�1

[[
A�1

[[
A�1

]]]]〉
P;

and S = P�1
〈
A�1

〉�1 〈
A�1

[[[[
A�1

]]]]〉
P:

Using (4.11), and rewriting in terms of characteristic independent variables, we

arrive at
(�1 � �2)w

(2)
1�

(�2 � �1)w
(2)
2�


 = N


 n12
�1��2

�4
2w

(0)
2��� + �2

1v
(1)
1��

n21
�2��1

�4
1w

(0)
1��� + �2

2v
(1)
2��


+R


�3

1w
(0)
1���

�3
2w

(0)
2���


� S


�2

1w
(0)
1���

�2
2w

(0)
2���


 :

(4.12)

Before we integrate to obtain w(2), we need to remove all terms independent of � from

the �rst component of (4.12) and all terms independent of � from the second com-

ponent, since these will lead to secular terms. This removal produces the consistency

conditions

w
(0)

1t̂
=

(
n12n21

�2 � �1

�4
1 + r11�

3
1 � s11�

2
1

)
w

(0)
1���

w
(0)

2t̂
=

(
n12n21
�1 � �2

�4
2 + r22�

3
2 � s22�

2
2

)
w

(0)
2���:

To solve these consistency conditions, it is most convenient to revert to physical

independent variables. We de�ne y(0)(x; t) = w(0)(�; �; t̂) and obtain

y (0)
1t

+ �1y
(0)

1x
= �2

(
n12n21

�2 � �1

�4
1 + r11�

3
1 � s11�

2
1

)
y (0)
1xxx

(4.13a)

y (0)
2t

+ �2y
(0)

2x
= �2

(
n12n21
�1 � �2

�4
2 + r22�

3
2 � s22�

2
2

)
y (0)
2xxx

: (4.13b)

(To obtain (4.13a), we consider t̂ and � as the two independent variables that are

being replaced by x and t; for the second equation, t̂ and � are the two independent

variables.)

Notice that these two equations are linearized Korteweg-de Vries (KdV) equations

with constant coeÆcients. The terms with three x derivatives indicate the dispersive
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nature of these equations, and the �2 premultiplying these terms shows the relative

strength of the dispersive e�ects to the advection represented on the left-hand sides.

Given the initial conditions

Py(0)(x; 0) = u(0)(x; 0; 0) = h(0)(x) =


sin(�x)

0


 ; (4.14)

we use the dispersion relations of (4.13) to �nd the solution

y (0)
1
(x; t) =

1

2
sin

[
�(x � �1t)� �2�3

(
n12n21
�2 � �1

�4
1 + r11�

3
1 � s11�

2
1

)
t

]

y (0)
2
(x; t) = �

1

2
sin

[
�(x � �2t)� �2�3

(
n12n21

�1 � �2

�4
2 + r22�

3
2 � s22�

2
2

)
t

]
:

Notice that when � and t are small, the solution represents the initial conditions being

advected at the speeds �1 and �2. Only when t > O(��2) do we see the dispersion

having a signi�cant e�ect on the wave speeds.

Using a spectral numerical technique (see Appendix B), we calculated the solution

to the original equation (4.1) for these initial conditions1. To verify that equations

(4.13) describe the right long-term behavior, we compare its solutions to the numerical

solution. We also compare the numerical solution with the solution to (4.13) without

the dispersive terms. This \non-dispersive" solution is the same solution that would

be obtained if we solved (4.1) without any slow temporal or stretched spatial scales.

Figure 4.1 makes these comparisons for the linear wave equation, with

�(x�) = 1 + 0:5 cos(�x�)� 0:3 sin(�x�) and,

k(x�) =
1

1� 0:1 cos(�x�) + 0:25 sin(�x�)
;

and � = 0:1. Because the period of the medium is 0:2� and the period of the

initial conditions is 2�, the solution is itself periodic with period 2�. Therefore, the

1We did not include corrections to the initial conditions (4.14) discussed in Section 3.4 for the

numerical solution. These corrections would only improve the correspondence between the analytic

and numeric solutions.
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solutions are only displayed between �1 < x < 1. (This periodicity also enables us

to use spectral numerical techniques, which are more accurate than comparable �nite

di�erence methods.) At t = 150, we see the analytic solution without dispersion

x

x

t = 150t = 150

t = 500t = 500

u1

u1

u2

u2
1

1

1

1

1

1

1

1

�1

�1

�1

�1

�1

�1

�1

�1

0:5

0:5

0:5

0:5

0:5

0:5

0:5

0:5

�0:5

�0:5

�0:5

�0:5

�0:5

�0:5

�0:5

�0:5

Numeric
Dispersive
Non-dispersive

Figure 4.1: Numerical solution versus two analytic solutions for the linear wave equa-

tion.

begins to deviate from the numerical solution. By t = 500, the solution is almost

completely out of phase with the numerical solution. The analytic solution to (4.13)

taking into account the dispersive term looks very good even at t = 500. Since the

wave speed in this problem is approximately one, by t = 500 almost 250 complete

waves have passed through the computation domain.

We make the same comparisons for the test problem of Kevorkian and Bosley in

Figure 4.2. In these simulations, we use the same initial conditions (4.14) and choose
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x

x

t = 100t = 100

t = 600t = 600

u1

u1

u2

u2
1

1

1

1

1

1

1

1

�1
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�1

�1
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Figure 4.2: Numerical solution versus two analytic solutions for the test problem of

Kevorkian and Bosley.

� = 0:5, � = 
 = �0:2, and Æ = 0:1 with � = 0:1. Again, notice that at t = 100, the

analytic solution that disregards dispersion begins to deviate from the true solution;

by t = 600, it cannot be used at all. (At t = 600, the graph of u2 without dispersion

is diÆcult to see because it is identically zero.) The analytic solution that accounts

for dispersion matches up very well at t = 100 and at t = 600 begins to slip o� the

true solution.

To summarize, we have seen that the dispersive e�ect of the 
uctuations in A(x�)

is real, and that the multiple-scale analysis accurately describes this behavior through

long-term evolution equations (consistency conditions). If we continue our analysis to

higher orders of �, we can determine more accurate long-term evolution equations.
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4.1.7 Solving the homogenized equations for an initial-boundary value problem

Now we turn our attention to the initial-boundary value problem for (4.1) to demon-

strate the diÆculty of the missing boundary conditions. Suppose that our solution

domain is the quarter space x > 0 and t > 0. Since one eigenvalue of A(x�) is always

positive and the other is always negative, we can only specify one boundary condition

at x = 0 (since it is a space-like arc):

u1(0; t; �) = g(t; �) = g(0)(t) +O(�) for t > 0: (4.15)

Also, let's prescribe the initial conditions

u(x; 0) = h(0)(x) + �h(1)(x; x�) + � � � for x > 0: (4.16)

Now we try to solve the consistency conditions (4.13) to demonstrate the diÆculty of

missing boundary conditions. What sorts of initial and boundary conditions are needed

to solve these equations, and how many conditions do we have?

One way to �gure out what conditions are needed to solve (4.13) is to use a

Laplace transform in t to turn these partial di�erential equations into a pair of third-

order, constant coeÆcient, linear ordinary di�erential equations. We can write these

two ODEs in the generic form

sY � f (x) + �Yx = �Yxxx ;

where Y (x ; s) is the Laplace transform of either y (0)
1

or y (0)
2
, and s is the transformed

variable, which must range from �� i1 to �+ i1. (Choose � so that the integration

contour is to the right of all singularities in the complex plane.) Since there is one

derivative in time, we need one initial condition for each y (0)
i
. The characteristic

equation for this ordinary di�erential equation has three roots. If we require that the

solution remains bounded as x ! 1, then we need as many boundary conditions at

x = 0 as the number of roots with nonpositive real part for the given range of s. We
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eliminate the possibility of all three roots having positive real part because this would

lead to the trivial solution. The two partial di�erential equations (4.13) may require

di�erent numbers of boundary conditions at x = 0, but each requires at least one.

Now let us examine what conditions are available to solve (4.13). First, the initial

condition (4.16) provides us with

y(0)(x; 0) = P�1u(0)(x; 0) = P�1h(0)(x)

for x > 0, which is precisely what we need. Next, the boundary condition (4.15) gives

u
(0)
1 (0; t) = p11y

(0)

1
(0; t) + p12y

(0)

2
(0; t) = g(0)(t)

for t > 0. Armed with only a linear combination of the boundary conditions along

x = 0, we do not have enough information to determine a unique solution to (4.13).

Notice that this diÆculty does not occur for the initial-value problem on the in�nite

domain �1 < x <1 because there isn't a boundary at x=0, and hence no boundary

conditions to satisfy.

4.1.8 Reduced multiple-scales solution

To get around the missing boundary condition diÆculty, let us revisit our assumption

of which scales are present in the expansion of u(x; t; �). Practically speaking, we

use slow temporal or stretched spatial scales to avoid secular terms in our asymptotic

expansion because secular terms limit the region of validity of our solution. Adding

these slow scales gives us the freedom to eliminate potentially secular terms by en-

forcing consistency conditions. However, at the moment we are unable to solve these

consistency conditions due to a lack of boundary information. Without slow temporal

or stretched spatial scales, we cannot avoid secular terms, but at least a temporary

solution can be found. From this temporary solution we can extract the \missing"

boundary conditions that we need to solve the consistency conditions.
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Let us illustrate this procedure for (4.1). We re-expand the state variables using

the reduced set of scales, x�, x and t:

u(x; t; �) = r(0)(x; t) + �r(1)(x; x�; t) + � � � :

We use r(i) instead of u(i) to avoid confusion with the previous multiple-scale expansion

of u(x; t; �). It is not necessary to repeat the work of obtaining the equations for each

order of � because the only change is that there are no derivatives with respect to any

slow temporal scales. Notice that by writing r(0)(x; t) instead of r(0)(x; x�; t) in our

new expansion, we have skipped the step of using the O(��1) system to eliminate the

x�-dependence of the leading-order solution.

Following the steps outlined in Section 4.1.2, we de�ne the characteristic indepen-

dent variables � = x � �1t and � = x � �2t, along with the characteristic dependent

variables r(0)(x; t) = P s(0)(�; �). As in Section 4.1.6, the governing equations for s(0)

are s
(0)
1� = 0 and s

(0)
2� = 0, which imply that

s(0)(�; �) =


s(0)1 (�)

s
(0)
2 (�)


 :

In contrast to the analysis of the previous section, s(0) can be completely determined

at this stage since we don't allow it to depend on t̂. Using the O(1) initial conditions

from (4.16),

s(0)(x; x) =


s(0)1 (x)

s
(0)
2 (x)


 = P�1r(0)(x; 0) = P�1h(0)(x) for x > 0:

Therefore,

s
(0)
1 (�) =

1

detP

(
p22h

(0)
1 (�)� p12h

(0)
2 (�)

)
for � > 0

s
(0)
2 (�) = �

1

detP

(
p21h

(0)
1 (�)� p11h

(0)
2 (�)

)
for � > 0:
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We don't have to worry about the determinant of P being zero because P is nonsin-

gular.

Because � = x � �2t and �2 < 0, the second state variable s
(0)
2 (�) propagates

information to the \left" in the x-t plane. Furthermore, � is always positive in the

solution domain so s
(0)
2 (�) is completely determined. On the other hand, � = x � �1t

and �1 > 0 so � can take on positive and negative values in the solution domain.

The �rst state variable s
(0)
1 (�) propagates information to the \right" so the initial

conditions only determine s
(0)
1 (�) for � > 0. We still have to de�ne s

(0)
1 (�) for � < 0

using the O(1) boundary condition (4.15). Applying equation (4.15) gives g(0)(t) =

r
(0)
1 (0; t) = p11s

(0)
1 (��1t) + p12s

(0)
2 (��2t) for t > 0. Therefore,

s
(0)
1 (�) =

1

p11
g(0)(��=�1)+

p12

p11 detP

(
p21h

(0)
1 (��2=�1)� p11h

(0)
2 (��2=�1)

)
for � < 0:

We are now able to recover the \missing" boundary condition,

r
(0)
2 (0; t) =

p21

p11

(
g(0)(t)� h

(0)
1 (��2t)

)
+ h

(0)
2 (��2t):

If necessary, we can even calculate quantities like r
(0)
2x (0; t) by taking a derivative of

r(0) with respect to x , then setting x = 0.

The only potential diÆculty in the analysis above is if p11 vanishes. We digress

brie
y to show why p11 cannot be zero. One can show that if p11 = 0, then �12 = 0

as well, where �i j is the i-j entry of hA�1i
�1
. Furthermore, by our choice of �1 > 0

and �2 < 0, we can also infer that �11 = �2 < 0. These facts imply that

r
(0)
1t + �11r

(0)
1x = 0;

or that the �rst-component of the leading-order homogenized solution advects infor-

mation to the left in the x-t plane with speed j�2j. That means that one cannot

specify a boundary condition on the �rst-component, u1(0; t; �). Therefore, we must

assume p11 6= 0 to avoid this nonsensical result.
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The procedure outlined above for recovering boundary conditions can be repeated

for the equations that arise at higher orders of �. Solving the O(�) system of equations

using the reduced set of scales x�, x , and t, enables us to �nd the missing boundary

condition r
(1)
2 (0; 0; t). This process will not be demonstrated here as the algebra grows

exponentially with each order of �. We have developed Mathematica notebooks that

are capable of performing this tedious task to any order of �.

For example, suppose that for the linear wave equation (4.2), with the speci�c

functions

�(x�) = 1 + 0:5 cos(�x�)� 0:3 sin(�x�) and

k(x�) =
1

1� 0:1 cos(�x�) + 0:25 sin(�x�)
;

we impose the boundary condition

u1(0; t; �) = g(0)(t) = 1� cos t:

In addition, suppose that the initial conditions are

h(x ; �) =


sin�x

0


� �


cos(�x) (0:1 sin(�x�) + 0:25 cos(�x�))

0


+O(�2);

where the 
uctuating parts are chosen so that the solution does not depend on t� = t=�

(see Section 3.4). Using Mathematica, we calculate the missing boundary condition

to be

u2(0; t; �) =1� cos(t)� sin(�t) + �

(
cos(�t)

4
�

201 sin t

400�

)

+ �2
(
52639�t cos(�t)

320000
+

399361 cos t + 209161�2 sin(�t)

320000�2

)
+O(�3):

(4.17)

Notice that the O(�2) contribution to this recovered boundary information contains a

secular term proportional to t. The presence of this secular term makes the expansion
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valid only for t roughly less than ��1. As we will see, the region of validity is, in

practice, usually larger.

Since we do not have an exact solution to the original linear wave equation, we must

verify (4.17) numerically. Using CLAWPACK, we generate a numerical approximation

to the solution of the original linear wave equation (4.1) with A(x�) de�ned in (4.3),

and extract the values of u2(0; t) to compare with (4.17). (See Appendix B for more

discussion about CLAWPACK.) As there is no computer large enough to represent the

semi-in�nite solution domain x > 0 using �nite volumes, we limit ourselves to a �nite

computation domain of 0 < x < L. The upper limit L is chosen so that a wave entering

the computation domain from the right boundary does not interfere with the part of the

solution that we desire. We choose L = 110 because we are interested in calculating

u2(0; t) up to t = 100 and in this problem the wave speeds are �1. At x = 0, we

specify u1(0; t) using the given boundary condition, and simulate a free condition on

u2(0; t) using zero-order extrapolation. We also use zero-order extrapolation for both

u1 and u2 at x = L.

For � = 0:1, we �nd that the leading order term of (4.17) matches the numerically

calculated u2(0; t) very well for t < 10. As t gets larger, we must take into account

the higher order corrections in (4.17) to get a better correspondence. Figure 4.3

compares the analytically recovered boundary information against the numeric solution

for 75 < t < 100. In pane (a), we compare the numeric solution with the O(1) and

O(�) terms of (4.17) only; in pane (b), we include all terms displayed in (4.17). Notice

that without the O(�2) contribution, the analytic boundary information does not quite

match the numeric solution. The O(�2) contribution is therefore useful for t < 100,

even though it introduces a secular term.

A convincing way to verify that an expansion is asymptotically correct is to plot

the absolute error of the expansion against � using logarithmic scales [6]. The slope

of the resulting line indicates the rate of convergence of the asymptotic solution to
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Figure 4.3: Numerical veri�cation of the recovered boundary information for an initial-

boundary value problem for the linear wave equation.

the numeric solution as � ! 0. Figure 4.4 shows the absolute error of the analyti-

cally recovered boundary information (4.17), with di�erent terms of the asymptotic

expansion included. The absolute error is measured using the discretized version of

the integral

error =

∫ T

0

∣∣∣u(n)2 (0; t)� u
(a)
2 (0; t)

∣∣∣ dt;
where u(n) is the numeric solution and u(a) is the analytic expression that we are

observing. Ideally, we would compare the asymptotic expansion against the exact so-

lution, but since an exact solution is not available, we must make do with a numerically

calculated solution. Again we use CLAWPACK for our numeric solution, but this time

with a spatial domain of 0 < x < 60 and a spatial step size of 0:002. We then sample
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the boundary information, u2(0; t), in the range 0 < t < 50 using 2000 points.
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O(� 3) contribution, slope �
4:60

Figure 4.4: Rate of convergence of analytic recovered boundary information for an

initial-boundary value problem for the linear wave equation.

Figure 4.4 shows a surprising result. Keeping only the leading order term in (4.17),

we would normally expect the truncated error to be O(�) as � ! 0. However, we

see that the absolute error of the leading order term behaves more like �2 as � ! 0.

This �nding does not invalidate the asymptotic correctness of (4.17), it just means

that the leading order term is more accurate than expected. Similarly, we see that the

asymptotic expansion including the O(�2) contribution converges to the true solution

slightly faster than �3 as �! 0, which would normally expect. The asymptotic expan-

sion including up to the O(�) contribution only and the expansion with contributions

up to O(�3) (not shown) converge close to their expected rates.

Now let us also recover the missing boundary conditions for a case in which the
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initial conditions are zero (a signaling problem). We impose the same boundary con-

dition

u1(0; t; �) = g(0)(t) = 1� cos t;

but instead specify that u(x; 0; �) = 0. Under these conditions, we calculate the

missing boundary condition to be

u2(0; t; �) = 1� cos t � �
201 sin t

400�
+ �2

399361 cos t

320000�2
+O(�3): (4.18)

When we compare (4.18) to the recovered boundary information with nonzero initial

conditions (4.17), we see that there are no secular terms in the recovered boundary

information for the signaling problem.

Figure 4.5a shows the analytically recovered boundary information in (4.18) against

its numeric counterpart, calculated solution using � = 0:2 and a spatial step size of

0:0005 for 0 < t < 20. (We used 0 < x < 25 as our computational domain.)

Displayed in this manner, the numeric and analytic u2(0; t) are indistinguishable. Fig-

ure 4.5b shows that the O(�2) contribution to the recovered boundary condition does

indeed increase its accuracy.

Once again, we compare the recovered boundary information (4.18) against the

numeric solution for various � and plot the absolute error versus � using a logarithmic

scale. Figure 4.6 shows that the leading order term of (4.18) by itself converges to the

true boundary information like � as �! 0, as expected. Adding the O(�) contribution

in (4.18) accelerates this convergence to �2 as � ! 0. We were not able to verify

this latter result for the same range of � because the numerical calculation reached

its limit of accuracy for our chosen spatial step size. As a result, we were also unable

to verify that including higher order terms in (4.18) improved the agreement between

the analytic and numeric solutions. Reducing the spatial step size would enable us to

verify these claims (because it would increase the overall accuracy of the numerical

method and better resolve the 
uctuations of the A(x�) matrix), but it would also
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Figure 4.5: Numerical veri�cation of the recovered boundary information for a signaling

problem for the linear wave equation.

increase computation time.

Now that we have seen how to use a reduced set of multiple scales to recover

boundary information that is asymptotically correct, we turn to the most striking fea-

ture of (4.17): the presence of secular terms proportional to t. What is the mechanism

that causes these secular terms to appear in the recovered boundary information? By

neglecting slow temporal and stretched spatial scales, secular terms (proportional to

x and t) will arise in the solution. It is therefore not surprising that secular terms

proportional to t may remain after we substitute x = 0.

What is more interesting is why the secular terms go away when the initial con-
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ditions are zero. Using Mathematica, we have calculated the recovered boundary

information to high orders of �. For the linear wave equation (4.2), there is only

one way for the boundary information to be free of secular terms. For convenience,

let us normalize �(x�) and k(x�) so that h�i = h1=ki = 1, so the wave speeds are

�1;2 = �1. In this case, only if h
(0)
1 (x) = h

(0)
2 (x) for all x > 0 will the recovered

boundary information be free of secular terms.

If we return to the reduced multiple-scale analysis introduced in this section, we

see that the leading order behavior of the solution is r(0)(x; t) = P s(0)(�; �), where

s
(0)
1 = s

(0)
1 (�) and s

(0)
2 = s

(0)
2 (�) are the characteristic dependent variables, and � =

x � t and � = x + t are the characteristic independent variables. Because of our

choice of variables, s
(0)
1 represents a wave traveling to the \right" in the x-t plane,
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and s
(0)
2 represents a wave traveling to the \left." With � and k normalized, s

(0)
2 (�) =

h
(0)
2 (�)�h

(0)
1 (�) for all � > 0, so if h

(0)
1 (x) = h

(0)
2 (x) then s

(0)
2 = 0. Therefore, we see

that the recovered boundary information is free of secular terms only when the wave

traveling to the left in the x-t plane is identically zero.

Why would the recovered boundary information be free of secular terms when

the initial conditions are such that the left-going wave vanishes? The reason is that

without the slow and stretched scales, the multiple-scale analysis produces a solution

that models advection only. This purely advected solution is only accurate for small

t because the true long-term behavior of the solution includes dispersion or higher-

order e�ects. The recovered boundary information is the result of the interaction

between the partial di�erential equation, the given boundary condition, and the left-

going wave hitting the boundary. If the left-going wave is nonzero, the recovered

boundary information will become inaccurate for large t. Therefore, the presence

of secular terms is merely a sign that the recovered boundary information cannot

be trusted for large t. Neglecting these secular terms not only makes the recovered

boundary information less accurate (as in the example initial-boundary value problem in

this section), it also gives the false impression that the recovered boundary information

can be used for large t. However, the reader should keep in mind that for the signaling

problem (initial conditions equal to zero), the left-going wave is zero, and the recovered

boundary information will have no secular terms. We take advantage of this fact in

the next section.

4.1.9 Multiple scales solution revisited

Now armed with the recovered boundary information, we can return to solving the

consistency conditions (4.13). A general solution to these equations would be very

complicated, so we demonstrate the solution procedure for the linear wave equation
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with

�(x�) = 1 + 0:5 cos(�x�)� 0:3 sin(�x�) and

k(x�) =
1

1� 0:1 cos(�x�) + 0:25 sin(�x�)
;

the initial conditions

u(x; 0; �) = P�1h(0) +O(�) =


 1

2
sin(�x)

�1
2
sin(�x)


+O(�);

and the boundary information

u1(0; t; �) = g(t; �) = 1� cos t +O(�):

Since the original partial di�erential equation (4.1) is linear, we can use superposi-

tion to partition the initial-boundary value problem into two problems, an initial-value

problem, and a signaling problem. Let u(x; t; �) = u(A)(x; t; �) + u(B)(x; t; �), where

u(A) and u(B) satisfy the same partial di�erential equation (4.1), but u(A) satis�es the

initial-value problem in the in�nite domain and u(B) satis�es the signaling problem in

the semi-in�nite domain. Speci�cally, u(A)(x; 0; �) = h(x ; �) on �1 < x < 1, while

u
(B)
1 (0; t; �) = g(t; �) � u

(A)
1 (0; t; �) for t > 0 and u(B)(x; 0; �) = 0 for x > 0. It

doesn't matter how the initial conditions h(x ; �) are extended for negative x , because

once the solution to the initial-value problem is obtained, u
(A)
1 (0; t; �) is subtracted

from the boundary information, u
(B)
1 (0; t; �). The sum of u(A) and u(B) will satisfy all

of the original initial and boundary conditions.

There are two reasons why we want to consider a signaling problem instead of

a problem with nontrivial initial and boundary conditions. The �rst reason is that

we have seen that the recovered boundary conditions contain secular terms when the

initial conditions are nontrivial. To maximize the region of validity of our asymptotic

expansion, we should use the recovered boundary conditions for the signaling problem
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instead. The second reason is that solving the long-term evolution equations is much

simpler with zero initial conditions.

The initial-value problem for u(A) has already been solved in Section 4.1.6. If we

extend the initial conditions in the natural way for negative x , the solution for our

particular choice of � = 0:1, �(x�) and k(x�) is

u(A)(x; t; �) =
1

2




sin

(
31947361�t

32000000
+ �x

)
� sin

(
31947361�t

32000000
� �x

)

� sin

(
31947361�t

32000000
+ �x

)
� sin

(
31947361�t

32000000
� �x

)

+O(�):

Now we are ready to solve the signaling problem for u(B). Let u(B)(x; t; �) =

Py(B)(x; t) + O(�), and y(B) satisfy the long-term evolution equations (4.13). The

boundary conditions for y(B)(0; t) come from the recovered boundary conditions for

the signaling problem (4.18) and u(A)(0; t; �):

y(B)(0; t) = P�1u(B)(0; t; 0) = P�1


 g(0)(t)� uA1 (0; t; 0)

1�

(
399361

32000000�2
� 1

)
cos t �

201

4000�
sin t




=


1 +

(
399361

64000000�2
� 1

)
cos t �

201

8000�
sin t

399361 cos t � 1608000� sin t

64000000�2


 :

To solve for y(B), we use a Laplace transform in t to turn the partial di�erential

equations (4.13) into third-order ordinary di�erential equations:

�
52639

32000000�2

d3Y
(B)
1

dx3
�
dY

(B)
1

dx
� sY

(B)
1 = 0 (4.19a)

52639

32000000�2

d3Y
(B)
2

dx3
+
dY

(B)
2

dx
� sY

(B)
1 = 0 (4.19b)

where

Y
(B)
i (x; s) = L

[
y (B)
i

(x; t)
]
=

∫ 1

0

e�sty (B)
i

(x; t)dt:

Using Mathematica, we have veri�ed that only one of the three roots of the char-

acteristic equation for Y
(B)
1 has nonpositive real part, and two of the roots of the
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characteristic equation for Y
(B)
2 have nonpositive real part. Let these roots be �

(1)
1

and �
(2)
1 , �

(2)
2 , respectively; we don't display these roots here for brevity. We do not

use the homogeneous solutions based on the roots with positive real parts because we

want the solution to remain bounded as x ! 1. The fact that there are two roots

with nonpositive real part for Y
(B)
2 means that we need two boundary conditions to

�nd a unique solution for Y
(B)
2 . In the previous section, we explained how to obtain the

extra information that we need, y (B)
2x

(0; t). We don't display this recovered boundary

information to save space.

Once we have recovered all the necessary boundary conditions, the solutions to

the ordinary di�erential equations (4.19a) and (4.19b) are

Y
(B)
1 (x; t) =L

[
y (B)
1

(0; t)
]
exp

(
�
(1)
1 x

)

Y
(B)
2 (x; t) =L

[
y (B)
2

(0; t)
] �(2)

1 exp
(
�
(2)
2 x

)
� �

(2)
2 exp

(
�
(2)
1 x

)
�
(2)
1 � �

(2)
2

+ L
[
y (B)
2x

(0; t)
] exp(�(2)

1 x
)
� exp

(
�
(2)
2 x

)
�
(2)
1 � �

(2)
2

:

The diÆcult part is now the inversion of these expressions. As the roots �
(1)
1 , �

(2)
1 , and

�
(2)
2 involve cube and square roots of s, the calculation of the Laplace inverse involves

branch cuts. As a result, the inversion integrals cannot be expressed in closed-form

and have to be approximated either analytically or numerically.

One way to make progress with an analytic approximation is to use residue calculus

and Watson's Lemma (see Section 2.1 and Chapter 4 of [26]). In particular, we use

the result that if F (s) has a branch point at s0 and can be expressed there as

F (s) = (s � s0)



1∑
n=0

an(s � s0)
n

with a0 6= 0 and 
 > �1, then

L�1 [F (s)] =
1

2�i

∫ �+i1

��i1

F (s)etsds � �
ets0 sin(
�)

�t
+1

1∑
n=0

an(�1)
nt�n� (
 + n + 1)
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as t !1. In many cases, the dominant term of this asymptotic expansion is suÆcient

for large t.

We locate and expand about the branch points of Y
(B)
1 and Y

(B)
2 . Residue calculus

and the dominant term of the branch point expansion give

y (B)
1

(x; t) �1� 0:999368 cos(t � 1:00017x)� :00799754 sin(1� 1:00017x)

+ xt�3=2
[
6:81765� 10�5 cos(29:8139t � 44:7209x)

�2:01145� 10�5 sin(29:8193t � 44:7209x)
] (4.20)

Notice that the �rst two terms of (4.20) are the most signi�cant terms, and that they

model the advection of the boundary information, y (B)
1

(0; t), with a small amount

of dispersion. We don't show y (B)
2

because it is too long. The coeÆcients in the

expansions of Y
(B)
1 and Y

(B)
2 about its branch points involve increasing powers of x

since we are essentially seeking expansions of exp(�x). If x is large and the real part

of � is negative, the power series expansion of exp(�x) requires many terms before

the series begins to converge. This means that the approximation given above is only

valid for large t and small x .

4.1.10 Summary and discussion

We have seen that for the linear wave equation and the test problem by Kevorkian and

Bosley, the cumulative (long-term) e�ects of the x�-scale 
uctuations in A(x�) only

appear on the t̂ = �2t scale. This fact is a direct consequence of the diagonal entries

of N being zero and it implies that the long-term evolution of the solution does not

include di�usion.

We believe that it is more than coincidence that di�usion should be absent for solu-

tions to remain bounded. The reader should keep in mind that the dependent variables

u come from a perturbation to a steady state solution for an arbitrary conservation

law. So if u grows in time, its corresponding steady state solution is unstable. We
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believe that for all physically realistic situations in which the steady state solution is

stable (implying that u remains bounded), the homogenized solution should not di�use

on the ~t or ~x scales.

As we will see in the next section, the presence of di�usion depends solely on the

matrix A(x�). With some algebra, one can compute that di�usion will be absent if

hb12 [[b21]]i hb11 � b22i+ h(b11 � b22) [[b12]]i hb21i+ hb21 [[b11 � b22]]i hb12i = 0; (4.21)

where bi j(x
�) is the i-j entry of A�1(x�). Notice that this condition is easily satis�ed if

either b11 = b22 or b12 = b21. (The latter fact and the computation of this condition

requires the fact that ha [[b]]i = �hb [[a]]i, which is proved in Appendix A.) In all of

the physical examples we have seen, one of these simpler conditions is satis�ed. For

the test problem of Kevorkian and Bosley (a nonphysical problem), condition (4.21)

is equivalent to the condition (�� Æ)(� � 
) = 0 that we computed in Section 3.3.

Assuming that di�usion is absent from the consistency conditions, the next observ-

able long-term phenomenon is dispersion. Problems that exhibit dispersion and not

di�usion have a pair of decoupled, linear KdV equations as their long-term evolution

equations (consistency conditions). For the solution domain x > 0 and t > 0, these

PDEs require one or two boundary conditions along x = 0 and one initial condition

along t = 0 for each dependent variable. Because our original hyperbolic problem

only allows us to specify a linear combination of both state variables along the bound-

ary x = 0, we cannot solve the long-term evolution equations armed with only the

information necessary for a well-posed con�guration of the original problem (4.1).

In Section 4.1.8, we showed that this problem can be circumvented by temporar-

ily ignoring the dependence of the solution on any slow temporal scales during the

multiple-scale analysis. Without these scales, we avoid those problematic consistency

conditions at the expense of a solution that is asymptotically valid in a smaller re-

gion of the solution domain. Once this temporary solution has been obtained, we can
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extract the \missing" boundary conditions and return to the original multiple-scale

homogenization technique.

We have also seen that the recovered boundary information will contain secular

terms proportional to t when the initial conditions are nontrivial. These presence of

these secular terms restricts the region of validity of the calculated solution. Fortu-

nately, the signaling problem is one situation in which the recovered boundary infor-

mation does not contain secular terms. In Section 4.1.9, we employed this fact to our

advantage by using superposition to partition the problem into two pieces, an initial-

value problem on the semi-in�nite domain, and a signaling problem with zero initial

conditions. The initial-value problem is solved using multiple scales, including slow

temporal scales. The consistency conditions for the signaling problem are solved using

the recovered boundary information from a multiple-scale analysis with a reduced set

of scales. In this manner, we are able to construct a solution that is asymptotically

valid for all time.

4.2 The general case

We now turn our attention to the general nonlinear problem represented by

ut + A(x�)ux + B(x�)u = � [C(u; x�)u+D(u; x�)ux ] +O(�2); (4.22)

which we introduced in Section 3.1. Recall that (4.22) arises when we linearize a

general system of conservation laws about its steady state solution. In this section,

we discuss the solution of (4.22) when u is a vector of two unknown functions and

when both initial and boundary conditions are present.

Suppose the initial conditions for (4.22) are

u(x; 0; �) = h(0)(x) + �h(1)(x; x�) +O(�2); (4.23)

where the 
uctuating parts of higher order terms cannot be speci�ed arbitrarily if we
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want to ensure a solution that is independent of the fast time variable, t� = t=� (see

Section 3.4).

Equation (4.22) is a system of �rst-order partial di�erential equations and its

leading order behavior is governed by the linear terms on the left-hand side. Following

the discussion in Section 3.2, we require A(x�) to be invertible and further assume

that one eigenvalue is always positive and the other always negative. This assumption

allows us to specify only one boundary condition at x = 0. The most general way of

writing this boundary condition is to specify a linear combination of the state variables,

�u1(0; t; �) + �u2(0; t; �) = g(t; �) = g(0)(t) +O(�); (4.24)

for t > 0. However, we do not lose any generality by assuming that � = 1 and � = 0.

In other words, we may assume that the �rst dependent variable is speci�ed at the

boundary x =0 and the second dependent variable is left unspeci�ed. The reason we

can do this is that for any constant 2�2 nonsingular matrix Z, the substitution u = Zv

does not fundamentally change the form of our problem. This substitution changes

(4.22) into

vt + Z�1A(x�)Zvx + Z�1B(x�)Zv =�
[
Z�1C(Zv; x�)Zv+ Z�1D(Zv; x�)Zvx

]
+O(�2);

which is still of the form represented by (4.22). However, the substitution changes

the boundary condition (4.24) to

[
� �

]
Zv(0; t) = g(0)(t) + �g(1)(t) + � � � ;

so we can use it to alter the linear combination of u1(0; t; �) and u2(0; t; �).

Suppose the solution to (4.22) has the asymptotic expansion

u(x; t; �) = u(0)(x; x�; ~x; t; ~t) + �u(1)(x; x�; ~x; t; ~t) +O(�2):
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We include the slow and stretched scales ~x = �x and ~t = �t because we only intend

carrying out the analysis to the O(�) system of equations|if we want to continue the

analysis to O(�2), we must �rst calculate the O(�2) contribution in (4.22). However,

the solution method does not change signi�cantly by including more spatial or temporal

scales.

As before, the multiple-scale analysis proceeds by plugging into (4.22) the expres-

sions

ut ! u
(0)
t + �(u

(1)
t + u

(0)
~t
) + � � � and

ux ! ��1u
(0)
x� + (u(0)x + u

(1)
x� ) + �(u

(0)
~x + u(1)x + u

(2)
x� ) + � � �

and collecting terms according to their powers of �.

4.2.1 O(��1) system

When we collect all terms that are proportional to ��1, we �nd that

A(x�)u
(0)
x� = 0:

Since the eigenvalues of A(x�) are never zero, A(x�) may be inverted to obtain u
(0)
x� =

0. In other words, the leading-order behavior of the solution does not depend on the

fast spatial scale: u(0) = u(0)(x; ~x; t). (As before, we use the convention that all

quantities independent of the fast spatial scale are underlined.)

4.2.2 O(1) system

The O(1) system is

u
(1)
x� = �A�1u(0)t � A�1Bu(0) � u(0)x : (4.25)

Before we integrate, we remove terms that are independent of x� using the averaging

operators (see Appendix A). We obtain the x�-homogenized equation

u
(0)
t +

〈
A�1

〉�1
u(0)x +

〈
A�1

〉�1 〈
A�1B

〉
u(0) = 0: (4.26)
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When we integrate the remaining part of (4.25) with respect to x�, we obtain

u(1) = �
[[
A�1

]]
u
(0)
t �

[[
A�1B

]]
u(0) + u(1)(x; ~x; t; ~t); (4.27)

where u(1) is the constant of integration.

Equation (4.27) also tells us that for a t�-independent solution, we must de�ne

h(1)(x; x�) =
[[
A�1

]] 〈
A�1

〉�1(dh(0)(x)

dx
+
〈
A�1B

〉
h(0)(x)

)
�
[[
A�1B

]]
h(0) + h(1)(x);

where h(1)(x) can be speci�ed arbitrarily, but the 
uctuating part of h(1)(x; x�) cannot.

4.2.3 O(�) system

The O(�) system is

u
(2)
x� =� u(1)x � u

(0)
~x � A�1u

(1)
t � A�1u

(0)
~t
� A�1Bu(1)

+ A�1C(u(0); x�)u(0) + A�1D(u(0); x�)u(0)x :
(4.28)

We plug in (4.27) and remove x�-independent terms to obtain

u
(1)
t +

〈
A�1

〉�1
u(1)x +

〈
A�1

〉�1 〈
A�1B

〉
u(1) = �

〈
A�1

〉�1
u
(0)
~x � u

(0)
~t

+
〈
A�1

〉�1 〈
A�1

[[
A�1

]]〉
u
(0)
tt +

〈
A�1

〉�1 〈
A�1

[[
A�1B

]]〉
u
(0)
t

+
〈
A�1

〉�1 〈
A�1B

[[
A�1

]]〉
u
(0)
t +

〈
A�1

〉�1 〈
A�1B

[[
A�1B

]]〉
u(0)

+
〈
A�1

〉�1 〈
A�1C(u(0); x�)

〉
u(0) +

〈
A�1

〉�1 〈
A�1D(u(0); x�)

〉
u(0)x :

(4.29)

When we integrate the remaining part of (4.28) with respect to x�, we obtain

u(2) =
[[[[

A�1
]]]]

u
(0)
tx +

[[[[
A�1B

]]]]
u(0)x +

[[
A�1

[[
A�1

]]]]
u
(0)
tt +

[[
A�1

[[
A�1B

]]]]
u
(0)
t

+
[[
A�1B

[[
A�1

]]]]
u
(0)
t +

[[
A�1B

[[
A�1B

]]]]
u(0) +

[[
A�1C(u(0); x�)

]]
u(0)

+
[[
A�1D(u(0); x�)

]]
u(0)x �

[[
A�1

]]
u
(1)
t �

[[
A�1B

]]
u(1) + u(2)(x; ~x; t; ~t);

(4.30)
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where u(2) is the constant of integration. By substituting x = 0 into (4.30), we can

obtain the speci�c form of the O(�2) initial conditions that allows for a t�-independent

solution. We don't display it for brevity.

4.2.4 Solving the homogenized equations

We now turn our attention to the homogenized systems of equations obtained from

the previous analysis. To solve (4.26), we diagonalize hA�1i
�1

by de�ning hA�1i
�1

=

P�P�1, where � = diag[�1; �2]. We choose �1 > 0 and �2 < 0 without any loss

of generality and de�ne the characteristic independent variables � = x � �1t and

� = x � �2t along with the characteristic dependent variables w(i) = P�1u(i). We

change derivatives using the formulas @t = ��1@� � �2@� and @x = @� + @�. All of

these substitutions result in

L(h)
[
w(0)

] def
=


(�1 � �2)w

(0)
1�

(�2 � �1)w
(0)
2�


+ P�1

〈
A�1

〉�1 〈
A�1B

〉
Pw(0) = 0: (4.31)

The di�erential operator L(h) governs the x�-homogenized equations at every order

of �. We don't �nd out how u(0) depends on the slower scales ~x or ~t until we consider

the set of equations at the next order of �.

Now the reason why we examined B(x�) = 0 case in Section 4.1 becomes apparent|

unless one of the o�-diagonal terms of P�1 hA�1i
�1
hA�1BiP vanishes, the equations

in (4.31) are essentially coupled and their solution can only be written in terms of

integrals of Bessel functions (see Section 3.7.1 of [18]).

The O(�) system of x�-homogenized equations (4.29), written using the charac-
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teristic dependent variables, is

L(h)
[
w(1)

]
= ��w(0)

~x �w
(0)
~t

+ P�1
〈
A�1

〉�1 〈
A�1

[[
A�1

]]〉
Pw

(0)
tt

+ P�1
〈
A�1

〉�1 〈
A�1

[[
A�1B

]]〉
Pw

(0)
t

+ P�1
〈
A�1

〉�1 〈
A�1B

[[
A�1

]]〉
Pw

(0)
t

+ P�1
〈
A�1

〉�1 〈
A�1B

[[
A�1B

]]〉
Pw(0)

+ P�1
〈
A�1

〉�1 〈
A�1C(Pw(0); x�)

〉
Pw(0)

+ P�1
〈
A�1

〉�1 〈
A�1D(Pw(0); x�)

〉
Pw(0)

x :

(4.32)

Notice that (4.32) is essentially the same as (4.31), except with source terms. At

this stage, one has to remove terms that could potentially lead to secular terms when

solving for w(1). In the linear problem of Section 4.1, this task was easy to do because

solving the x�-homogenized operator only involved integrating the �rst component

with respect to � and the second with respect to �. For the general case, we must

remove all terms from the right hand side of (4.32) that are homogeneous solutions

of the homogenized operator L(h). It is easy to see that w(0), w
(0)
~x and w

(0)
~t

are in

the null space of L(h), but it is diÆcult to see which of the remaining terms need to

be removed.

Let's look at the di�erent possibilities of consistency conditions that can arise. In

the most degenerate case when all the matrices on the right hand side of (4.32) are

zero, the consistency conditions will indicate that ~x and ~t should be replaced with

x̂ = �2x and t̂ = �2, and that the analysis must be carried out to O(�2) to see any

long-term e�ects.

The other extreme occurs when every term on the right hand side of (4.32) con-

tributes to the consistency condition. In this scenario, the consistency conditions will

be a pair of coupled, constant-coeÆcient, Burgers' equations. The presence of two

derivatives with respect to t indicates that di�usion is involved, and that we will not

have enough boundary conditions to solve the consistency conditions. (When the con-
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sistency conditions are written in physical variables, the terms with two t derivatives

become spatial or temporal derivatives depending on whether ~x or is involved.) We

would have to recover the boundary information using a reduced set of multiple scales

(see Section 4.1.8 or Section 5.1.7). However, notice that in (4.32) the matrix A(x�)

is solely responsible for the presence of terms with two t derivatives. In Section 4.1.10

we determined the condition for the diagonal entries of P�1 hA�1i
�1
hA�1 [[A�1]]iP

vanish. We do not know of any physical problems in which this condition is violated.

This observation leads us to believe that the most likely possibility is the one

between these two extremes, in which the consistency conditions become a pair of

coupled, constant-coeÆcient, quasi-linear, �rst-order partial di�erential equations. In

this situation, the fact that the consistency condition and the original PDE have the

order of derivatives in x and t suggests that missing boundary conditions is not a

diÆculty. But lest we think we can have our banana 
amb�e and eat it too, the

absence of terms with two derivatives in t means that there is no di�usion to regulate

the onset of shocks. As we discussed in Section 3.4, the moment a shock forms we

must include t� = t=� in our asymptotic expansion and a general solution will be out

of reach.

Let us illustrate these ideas with an example. The governing equations for elastic

waves in a one-dimensional solid are

@

@t
(�(x�)V )�

@

@x
(S(F )) = 0

@F

@t
�
@V

@x
= 0;

where V (x; t; �) is the velocity, F (x; t; �) is the displacement gradient, S(F ) is the

stress, and �(x�) is the density, which is allowed to vary on the fast scale, x� = x=�.

(See [2] or [19] for a thorough discussion of elastic waves.) We perturb about the

trivial resting state F = V = 0 by introducing V = �u1 and F = �u2. We also

suppose that the relationship between the stress and the displacement gradient is
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S(F ) = F + 1
2
F 2. (We just pick some numbers for simplicity, instead of the more

general S(F ) = �F + �F 2.) The resulting equations for u can be written in the form

of (4.22) with B(x�) = C(u; x�) = 0,

A(x�) =


 0 �1=�(x�)

�1 0


 ; and D(u; x�) =


0 u2=�(x

�)

0 0


 :

The fact that B(x�) = 0 simpli�es the analysis of the homogenized equations.

Let us solve an initial-boundary value problem in the domain x > 0 and t > 0.

We will use ~x but not ~t in our asymptotic expansion. It is not hard to show that the

long-term evolution equations that arise from removing potentially secular terms in

(4.32) are

w
(0)
1~x +

1

2

(
h�i�1=2 � 1

)
w

(0)
1� w

(0)
1 = 0 (4.33a)

w
(0)
2~x �

1

2

(
h�i�1=2 + 1

)
w

(0)
2� w

(0)
2 = 0: (4.33b)

This pair of decoupled, quasilinear, �rst-order partial di�erential equations can be

solved with requiring any additional initial and boundary information. To see this, we

need to examine the solution domains for both equations. The left half of Figure 4.7

shows the solution domain for w
(0)
1 in the �-~x plane and the right half shows the

solution domain for w
(0)
2 in the �-~x plane.

Initial conditions for w
(0)
1 and w

(0)
2 are speci�ed along the rays ~x = �� and ~x = ��,

respectively; the boundary condition is speci�ed as a linear combination of w
(0)
1 and

w
(0)
2 along the rays marked \BC" in Figure 4.7. As long as there are characteristics

�lling the solution domain for w
(0)
2 , we should be able to calculate w

(0)
2 using the

method of characteristics. We can then use the boundary information at x = ~x = 0

to obtain a complete solution for w
(0)
1 .

What are the ways this method could fail? Since the consistency conditions (4.33)

are homogeneous, every characteristic is a straight line whose slope is determined
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0 0 BCBC
� �

~x~x

~x = ��

~x = ��

Figure 4.7: Solution domains for the consistency conditions for elastic waves.

solely by the value of w
(0)
i at the point from which the characteristic emanates. Mo-

mentarily putting aside the case of shocks, let us consider the possibility that there are

regions of the solution domains that are not covered by characteristics. If we disallow

discontinuous initial and boundary data, the only way for the characteristics not to �ll

the solution domains is if the characteristics have slopes between 0 and �. An example

of a \bad" characteristic is shown in Figure 4.8.

0 BC
�

~x

Figure 4.8: Example of a \bad" characteristic for the second consistency condition

for elastic waves.

Calculating the slopes of the characteristics, we obtain the following restriction on

the initial conditions for the characteristics to properly �ll the solution domain:

1

2

(
h�i�1=2 � 1

)
w

(0)
1

∣∣∣
t=0

<
1

�
(4.34a)

and
1

2

(
h�i�1=2 + 1

)
w

(0)
2

∣∣∣
t=0

> �
1

�
: (4.34b)
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The initial values of w(0) are obtained from u(0) by w(0) = P�1u(0), where

P =


h�i�1=2 h�i�1=2

�1 1


 :

Notice that these two inequalities are implicitly satis�ed because we perturbed about

the steady state V = F = 0 to obtain this problem. The initial conditions, therefore,

cannot not be on the order of ��1.

The only diÆculty remaining is that of shocks. Recall from our discussion in

Section 3.4 that the formation of shocks necessitates the introduction of t� = t=�

into our asymptotic expansion, putting an analytic solution out of reach. To avoid

shocks forming from the outset of the problem, we must choose initial conditions that

are continuous, and that match the boundary condition at x = t = 0 so that there is

a single characteristic emanating from the origin in the �-~x plane.

As an illustration, let us calculate the solution to this problem with the initial

conditions

u(x; 0; �) = h(0)(x) +O(�) =


x=(x + 1)

0


+O(�)

for x > 0, and the boundary condition

u1(0; t; �) =
t + 1

2
sin t

t + 3
+O(�)

for t > 0. We choose � = 0:1 and �(x�) = 1 + 1
2
sin x� so h�i = 1. The initial

conditions satisfy (4.34) and match the boundary condition at x = t = 0. The

characteristic emanating from the origin is the line x = h�i�1=2 t. Figure 4.9 shows

the analytic solution at two di�erent times. The nonlinear e�ects, though diÆcult to

observe from these graphs, cause slight wave-steepening in the solution. The reason

that the solutions for u1 and u2 appear symmetric is because h
(0)
2 (x) = 0.
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(a) solution at t = 10 (b) solution at t = 20

10 1020 2030 3040 40

1 1

0:8 0:8

0:6 0:6

0:4 0:4

0:2 0:2

xx

u1
u1

u2
u2

Figure 4.9: Analytic solution to the long-term evolution equations (consistency con-

ditions) for elastic waves at two di�erent times.

4.2.5 Summary and discussion

We have seen that all of the basic concepts from the linear problem with B(x�) = 0

apply equally well to the general nonlinear problem (4.22). These concepts include the

relationship between slow and stretched scales and observable long-term phenomena,

the construction of consistency conditions, the reason for the missing boundary diÆ-

culty, and the recovery of missing boundary information using a reduced set of multiple

scales. Generalizing to (4.22), however, does alter the analysis in a few ways.

First, if B(x�) is nonzero, the operator L(h) that governs the x�-homogenized

equations to every order of � is likely to represent an essentially coupled system of

equations. (More precisely, this happens when P�1 hA�1i
�1
hA�1BiP has nonzero o�-

diagonal terms.) The result of this coupling is that the solution of the homogenized

equations involves integrals of Bessel functions, and more importantly, the construction

of the consistency conditions from (4.32) is obscured. The consistency conditions have

the potential to form a pair of coupled Burgers' equations, whose solution necessitates

the recovery of boundary information at x = 0. In Section 5.1.7, we show how to

recover the boundary information for a linear problem with nontrivial B(x�)|this is
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suÆcient to recover the leading-order boundary information for the general nonlinear

problem.

Second, the fact that (4.22) is nonlinear means that we cannot use superposi-

tion to partition an initial-boundary value problem into an initial-value problem and a

signaling problem. Although it is not any more diÆcult to recover boundary informa-

tion for a problem with nontrivial rather than trivial initial conditions, we have seen in

Section 4.1.8 that nontrivial initial conditions lead to secular terms in the recovered

boundary information. These secular terms limit the region of validity of the computed

solution.

Finally, the presence of nonlinearities can actually alleviate the missing boundary

diÆculty. Whether di�usion is present in the consistency condition (4.32) depends only

on the matrix A(x�), and we have not come across any physically relevant problems

that exhibit di�usion. From our analysis of the linear problem with B(x�) = 0, we

learned that after di�usion, the next possible type of long-term behavior is dispersion,

which appears in the O(�2) system of homogenized equations. However, the most

signi�cant long-term e�ects for nonlinear problems manifest themselves at the O(�)

system of x�-homogenized equations. Because these nonlinearities occur one order

of � earlier, and only involve one spatial derivative of the dependent variables, we

predict that the consistency conditions for all physically relevant problems will be

�rst-order partial di�erential equations. As the order of these consistency conditions

matches the original partial di�erential equation, there is a good chance that there no

additional boundary conditions are needed to solve the consistency conditions. The

initial-boundary value problem of elastic waves in a one-dimensional solid is a perfect

example of such a situation.
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Chapter 5

THE LAPLACE-MULTIPLE-SCALE METHOD

In this chapter, we present an alternative method for handling linear hyperbolic

systems with rapid spatial 
uctuations using a combination of Laplace transforms and

multiple-scales (the Laplace-MS method). We use a Laplace transform in time to turn

partial di�erential equations (PDEs) into ordinary di�erential equations (ODEs), then

apply the multiple-scales method to the resulting ODEs.

We will see that the Laplace-MS method is not useful for �nding solutions that

account for the long-term behaviors of linear hyperbolic conservation laws, but it will

reinforce and con�rm all of the �ndings of the previous chapters in a novel way.

5.1 The general linear problem

As the Laplace transform is not suited for solving nonlinear problems, in this chapter

we focus on the equation,

ut + A(x�)ux + B(x�)u = 0; (5.1)

which is the most general, linear system of equations that �ts the standard form

(3.3). The matrices A(x�) and B(x�) are 2� 2 matrix functions of the rapid spatial

variable x�=x=�, where 0<��1. Our solution procedure involves using the Laplace

transform to turn (5.1) into the system of ODEs, then using multiple scales to analyze

the ODEs. As in Chapter 4, we include all the necessary spatial scales from the outset

of the multiple scale expansion.
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A Laplace transform in t,

U(x; s; �) =

∫ 1

0

e�st u(x; t; �)dt;

transforms (5.1) into a system of ODEs

Ux + A�1(sI + B)U = A�1u(x; 0): (5.2)

Now we apply the method of multiple-scales to (5.2). We noted in Chapter 4 that

the choice of scales in our multiple-scale expansion is the key to the whole problem.

As we intend to analyze (5.1) up to the O(�2) system of equations, we include both

~x = �x and x̂ = �2x in our asymptotic expansion:

U(x; s; �) = U(0)(x; ~x; x̂ ; s) + �U(1)(x; x�; ~x; x̂ ; s) + � � � : (5.3)

Notice that we have already skipped the step of verifying that the leading-order solution

is independent of x�. (We continue our convention that all x�-independent quantities

have an underbar.) Derivatives with respect to x become

d

dx
! ��1

@

@x�
+

@

@x
+ �

@

@~x
+ �2

@

@x̂
:

Also, suppose that the initial values for u can be expanded as

u(x; 0; �) = h(0)(x) + �h(1)(x; x�) + � � � ;

where the 
uctuating part of h(1)(x; x�) cannot be speci�ed arbitrarily, as discussed

in Section 3.4. We plug all these expansions into (5.2) and collect terms with like

powers of �.

5.1.1 O(1) system of ODEs

The O(1) system of ODEs is

U
(1)
x� +U(0)

x + A�1(sI + B)U(0) = A�1h(0)(x): (5.4)
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When we remove x�-independent terms that lead to secular growth, we arrive at the

x�-homogenized system of ODEs

U(0)
x + hZiU(0) =

〈
A�1

〉
h(0)(x); (5.5)

where Z = A�1(sI + B). The remaining part of the O(1) system is

U
(1)
x� + fZgU(0) = fA�1gh(0)(x);

which we can now integrate to get

U(1) = �
[[
Z
]]
U(0) +

[[
A�1

]]
h(0)(x) +U(1)(x; ~x; x̂ ; s): (5.6)

5.1.2 O(�) system of ODEs

The O(�) system is

U
(2)
x� +U(1)

x +U
(0)
~x + ZU(1) = A�1h(1)(x; x�): (5.7)

Plug in (5.6) and its derivative to get

U
(2)
x� �

[[
Z
]]
U(0)
x +

[[
A�1

]]
h(0)x +U(1)

x +U
(0)
~x + ZU(1)

� Z
[[
Z
]]
U(0) + Z

[[
A�1

]]
h(0) = A�1h(1):

Remove x�-independent terms to obtain the O(�) homogenized system of ODEs,

U(1)
x + hZiU(1) = �U(0)

~x +
〈
Z
[[
Z
]]〉

U(0) �
〈
Z
[[
A�1

]]〉
h(0) +

〈
A�1h(1)

〉
: (5.8)

We integrate the remaining part of the O(�) system to get

U(2) =
[[[[

Z
]]]]
U(0)
x �

[[[[
A�1

]]]]
h(0)x �

[[
Z
]]
U(1) +

[[
Z
[[
Z
]]]]
U(0) (5.9)

�
[[
Z
[[
A�1

]]]]
h(0) +

[[
A�1h(1)

]]
+U(2)(x; ~x; x̂ ; s):
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5.1.3 O(�2) system of ODEs

The O(�2) system is

U
(3)
x� +U(2)

x +U
(1)
~x +U

(0)
x̂ + ZU(2) = A�1h(2): (5.10)

To clearly see the average and 
uctuating parts, we plug in the previous solutions (5.6)

and (5.9).

A�1h(2) =U
(3)
x� �

[[
Z
]]
U

(0)
~x +U

(1)
~x +

[[[[
Z
]]]]
U(0)
xx �

[[[[
A�1

]]]]
h(0)xx �

[[
Z
]]
U(1)
x

+
[[
Z
[[
Z
]]]]
U(0)
x �

[[
Z
[[
A�1

]]]]
h(0)x +

[[
A�1h(1)x

]]
+U(2)

x +U
(0)
x̂

+ Z
[[[[

Z
]]]]
U(0)
x � Z

[[[[
A�1

]]]]
h(0)x � Z

[[
Z
]]
U(1)

+ Z
[[
Z
[[
Z
]]]]
U(0) � Z

[[
Z
[[
A�1

]]]]
h(0) + Z

[[
A�1h(1)

]]
+ ZU(2)

Remove average terms to obtain the O(�2) homogenized system of ODEs,

U(2)
x + hZiU(2) =�U

(0)
x̂ �U

(1)
~x �

〈
Z
[[[[

Z
]]]]〉

U(0)
x +

〈
Z
[[[[

A�1
]]]]〉

h(0)x

+
〈
Z
[[
Z
]]〉

U(1) �
〈
Z
[[
Z
[[
Z
]]]]〉

U(0) +
〈
Z
[[
Z
[[
A�1

]]]]〉
h(0)

�
〈
Z
[[
A�1h(1)

]]〉
+
〈
A�1h(2)

〉
:

(5.11)

The remaining part of the O(�2) system can be integrated to obtain

U(3) =
[[
A�1h(2)

]]
+
[[[[

Z
]]]]
U

(0)
~x �

[[[[[[
Z
]]]]]]

U(0)
xx +

[[[[[[
A�1

]]]]]]
h(0)xx +

[[[[
Z
]]]]
U(1)
x

�
[[[[

Z
[[
Z
]]]]]]

U(0)
x +

[[[[
Z
[[
A�1

]]]]]]
h(0)x �

[[[[
A�1h(1)x

]]]]
�
[[
Z
]]
U(2)

�
[[
Z
[[[[

Z
]]]]]]

U(0)
x +

[[
Z
[[[[

A�1
]]]]]]

h(0)x +
[[
Z
[[
Z
]]]]
U(1)

�
[[
Z
[[
Z
[[
Z
]]]]]]

U(0) +
[[
Z
[[
Z
[[
A�1

]]]]]]
h(0) �

[[
Z
[[
A�1h(1)

]]]]
+U(3)(x; ~x; x̂ ; s):

(5.12)

5.1.4 Choosing initial conditions for t�-independent solutions

Armed with expressions for U(0), U(1), etc., we can now address the question of what

initial conditions give rise to solutions that are independent of t� = t=�. We cannot
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perform the natural substitution t = 0 because the solution is still in the Laplace

domain|it needs to be inverted �rst.

First, we observe that if U(0) is independent of x�, then h(0) = h(0)(x) should also

be independent of x�.

To see what happens at the next order, we rewrite (5.6) using the de�nition

Z = A�1(sI + B) to get

U(1) = �
[[
A�1

]]
(sU(0) � h(0)(x))�

[[
A�1B

]]
U(0) +U(1):

Recognizing that the Laplace transform of f 0(t) is sF (s) � f (0), when we apply an

inverse Laplace transform, we get

u(1) = �
[[
A�1

]]
u
(0)
t �

[[
A�1B

]]
u(0) + u(1);

so

h(1)(x; x�) = �
[[
A�1

]]
u
(0)
t jt=0 �

[[
A�1B

]]
h(0) + h(1)(x): (5.13)

The average part of the O(�) initial conditions, h(1)(x), may be chosen arbitrarily

but the 
uctuating part is �xed by our assumption that the solution is independent

of t� = t=�. Incidentally, (5.13) is also obtained using the standard multiple-scale

technique. This analysis may be continued for higher orders of �.

5.1.5 Solving the homogenized ODEs for the signaling problem

In this section, we solve the x�-homogenized ordinary di�erential equations that we

generated in the analysis above, specializing to the signaling problem in the semi-

in�nite domain x > 0 and t > 0. We don't lose any generality by assuming that the

initial conditions in this problem are zero because we can use superposition to partition

a problem with both initial and boundary conditions into two separate problems: an

initial-value problem on the in�nite domain �1 < x < 1 and a signaling problem in

the semi-in�nite domain.
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To �x ideas, suppose that u1(0; t; �) = g(t; �) for t > 0 is the speci�ed boundary

condition1 and u(x; 0; �) = h(x ; �) for x > 0 is the initial condition. Let us write

u(x; t; �) = v(x; t; �) + w(x; t; �), where v and w both satisfy (5.1), but the spatial

domain for v is �1 < x < 1 and the domain for w is x > 0. We extend the

initial conditions h(x ; �) however we like, and enforce v(x; 0; �) = h(x ; �). Once we

obtain the solution to the initial value problem (addressed in Section 4.1.6 and [19]),

the only remaining task is to solve the signaling problem (zero initial conditions) with

the boundary condition w1(0; t; �) = g(t; �) � v1(0; t; �) for t > 0. Since (5.1) is a

linear equation, we can add v and w to obtain the solution to the general problem

with both initial and boundary conditions. It doesn't matter how the initial conditions

h(x ; �) are extended for negative x because these values will be subtracted again from

the boundary condition for w1(0; t; �). This partitioning allows us to focus on the

signaling problem for (5.1) in this section. The analysis for nonzero initial conditions

is messier because it involves solving inhomogeneous ordinary di�erential equations,

but the concepts are the same.

Now let us solve (5.1), supposing that u1(0; t; �) = g(t; �) for t > 0 is our boundary

condition and u(x; 0; �) = 0 for x > 0 is our initial condition. With the initial conditions

eliminated, the O(1) homogenized system of ODEs, equation (5.5), becomes

U(0)
x + hZiU(0) = 0;

where Z = A�1(sI + B). The solution to this homogeneous system of equations is

U(0) = e�hZixV(0)(~x; x̂ ; s); (5.14)

where V(0) is a constant of integration. We do not know the ~x- or x̂-dependence

of V(0) until we consider the equations arising at higher orders of �, but there is one

1In Section 4.2 we explained why we don't lose any generality by specifying u1 instead of a linear

combination of u1 and u2 at x = 0.
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important diÆculty: we only know u1(0; t; �), so the boundary condition alone is not

enough to solve the problem. The answer is to also enforce whatever conditions are

necessary for the solution to be Laplace-invertible. Here's how.

With a little bit of algebra, one can write

ehZix = J2e
�1x � J1e

�2x ; (5.15)

where �1 and �2 are the eigenvalues of hZi, and

Li =
1

�
(hZi � �i I)

for i = 1; 2. Since Z = A�1(sI + B), the eigenvalues �i are actually functions of s:

�1;2 =
tr hZi � �

2
; (5.16)

where � = �1��2 =
√
tr2 hZi � 4 det hZi. So now we can see that in the expression

U(0) = e�hZixV(0)(~x; x̂ ; s) =
[
J2e

��1x � J1e
��2x

]
V(0)(x̂ ; s);

all terms involving e��2x are not Laplace-invertible because �2 has negative real part
2.

Therefore, to eliminate these terms, we need J1V
(0) = 0, which is equivalent to V(0)

being an eigenvector associated with �1. The boundary information is the other piece

of information that will allow us to determine V(0) completely.

The O(�) homogenized system of ODEs, equation (5.8), with zero initial condi-

tions, is

U(1)
x +U

(0)
~x + hZiU(1) �

〈
Z
[[
Z
]]〉

U(0) = 0:

To solve this equation, we make the substitution U(1) = e�hZixM(1) to obtain

M(1)
x = �V(0)

~x + ehZix
〈
Z
[[
Z
]]〉

e�hZixV(0): (5.17)

2The eigenvalue �2 is associated with the negative sign in (5.16). Also, when js j is large, the

eigenvalues of A�1 will dominate and we have assumed that one eigenvalue of A�1 is positive and

the other is negative.



88

Before, we integrate with respect to x , we �rst need to remove terms that are inde-

pendent of x (like V(0)), so we do not get secular terms.

Using (5.15), we calculate

ehZix
〈
Z
[[
Z
]]〉

e�hZix =J1
〈
Z
[[
Z
]]〉

J1 + J2
〈
Z
[[
Z
]]〉

J2

� J2
〈
Z
[[
Z
]]〉

J1e
(�1��2)x � J1

〈
Z
[[
Z
]]〉

J2e
(�2��1)x :

(5.18)

It is the matrix C(0) = J1
〈
Z
[[
Z
]]〉

J1 + J2
〈
Z
[[
Z
]]〉

J2 that we are concerned about,

because it is independent of x and leads to secular terms. The removal of these

potentially secular terms in (5.17) produces the ordinary di�erential equation

V
(0)
~x = C(0)V(0);

which has the solution

V(0) = exp
(
C(0)~x

)
W(0)(x̂ ; s): (5.19)

The diÆculty with (5.19) is that, in general, it is not Laplace invertible. The

reason for this is that the entries of hZi are linear in s, so the eigenvalues involve

linear functions and square roots of quadratic functions in s. Using the de�nitions of

Li , we see that calculating C(0) involves squaring some eigenvalues, which will lead to

quadratic functions in s. It is not possible to �nd the Laplace inverse of a function

containing exp(cs2) for any constant c (see Chapter 28 of [12]). In other words,

there is no function of t that has exp(cs2) as its Laplace transform. The presence

of noninvertible terms is why the Laplace-MS method is unable to construct solutions

that account for the long-term e�ects of the 
uctuations in A(x�) and B(x�).

5.1.6 Signaling problem for the linear wave equation

As an illustration, let us solve the homogenized ODEs that arise for the linear wave

equation,

�(x�)wtt � (k(x�)wx)x = 0; (5.20)
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where w(x; t; �), �(x�) and k(x�) are the displacement, density and bulk modulus,

respectively. We assume that �(x�) and k(x�) are positive functions. As in Section 4.1,

we rewrite this second-order equation as a system of �rst-order PDEs in the form of

(5.1) with

A(x�) =


 0 k(x�)

1=�(x�) 0


 ;

and B(x�) = 0.

We begin by performing some matrix calculations. The matrix Z is

Z = A�1(sI + B) = s


 0 �(x�)

1=k(x�) 0


 ;

and the eigenvalues of hZi are �1 = s h�i hk�1i and �2 = �s h�i hk�1i. The matrix

exponential ehZix can be expressed as

ehZix = J2e
�1x � J1e

�2x ;

where

J1 =
1

2




�1
h�i1=2

hk�1i1=2

hk�1i
1=2

h�i1=2
�1


 and J2 =

1

2




1
h�i1=2

hk�1i1=2

hk�1i
1=2

h�i1=2
1


 :

Also,

〈
Z
[[
Z
]]〉

= s2


〈k�1[[�]]〉 0

0
〈
�
[[
k�1

]]〉

 = s2

〈
k�1

[[
�
]]〉 1 0

0 �1


 :

(We have used the fact that
〈
k�1

[[
�
]]〉

= �
〈
�
[[
k�1

]]〉
, which we prove in Appendix A.)

A simple calculation will show that regardless of �(x�) and k(x�), the product

Li

〈
Z
[[
Z
]]〉

Li = 0 for i = 1; 2, so that C(0) = J1
〈
Z
[[
Z
]]〉

J1 + J2
〈
Z
[[
Z
]]〉

J2 = 0.

Equation (5.19) tells us the signi�cance of this �nding: that ~x is not needed in our

asymptotic expansion. This �ts with our analysis in Chapter 4 that there is no di�usion
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on the ~t = �t or ~x scale. Now, we examine the x�-homogenized system of ODEs at

each order of �, neglecting all initial conditions and derivatives with respect to ~x .

The O(1) homogenized system of ODEs,

U(0)
x + hZiU(0) = 0; (5.21)

has the solution

U(0) = e�hZixW(0)(x̂ ; s) =
[
J2e

��1x � J1e
��2x

]
W(0)(x̂ ; s):

Because ��2 = s h�i hk�1i and h�i hk�1i > 0, we must eliminate all occurrences of

e��2x in U(0) if we want a solution that is Laplace-invertible. (Also, we want the

solution to remain bounded as x ! 1.) Therefore, we must enforce J1W
(0) = 0,

making W(0) an eigenvector associated with �1. Now U(0) = J2e
��1xW(0)(x̂ ; s).

Neglecting ~x derivatives, the O(�) system of x�-homogenized ODEs is

U(1)
x + hZiU(1) =

〈
Z
[[
Z
]]〉

U(0):

As before, we make the substitution U(1) = e�hZixM(1)(x; x̂ ; s) to obtain

M(1)
x = ehZix

〈
Z
[[
Z
]]〉

e�hZixW(0) = �J1
〈
Z
[[
Z
]]〉

J2e
(�2��1)xW(0):

(We have used (5.18) and the fact that J1W
(0) = 0.) Notice that there are indeed

no terms independent of x , so we can integrate to obtain

M(1)(x; x̂ ; s) =
1

�1 � �2

J1
〈
Z
[[
Z
]]〉

J2e
(�2��1)xW(0) +W(1)(x̂ ; s):

Because U(1) = e�hZixM(1)(x; x̂ ; s), we need to enforce J1V
(1) = 0, as we did for V(0),

to ensure that U(1) is Laplace-invertible.

Finally, we turn to the O(�2) homogenized system of equations (5.11) and set all

initial conditions to zero:

U(2)
x + hZiU(2) = �U(0)

x̂ �
〈
Z
[[[[

Z
]]]]〉

U(0)
x +

〈
Z
[[
Z
]]〉

U(1) �
〈
Z
[[
Z
[[
Z
]]]]〉

U(0)

= �U(0)
x̂ +

(〈
Z
[[[[

Z
]]]]〉

hZi �
〈
Z
[[
Z
[[
Z
]]]]〉)

U(0) +
〈
Z
[[
Z
]]〉

U(1):
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(The second equality above comes applying (5.21).) LetU(2)(x; x̂ ; s) = e�hZixM(2)(x̂ ; s)

to obtain

M(2)
x =�W

(0)
x̂ + ehZix

(〈
Z
[[[[

Z
]]]]〉

hZi �
〈
Z
[[
Z
[[
Z
]]]]〉)

e�hZixW(0)

+ ehZix
〈
Z
[[
Z
]]〉

e�hZixM(1):

We must remove terms independent of x to avoid secular terms. This requires

W
(0)
x̂ =

(
C(1) �

1

�1 � �2

J2
〈
Z
[[
Z
]]〉

(J1)
2
〈
Z
[[
Z
]]〉

J2

)
W(0);

where

C(1) =

2∑
i=1

Ji
(〈
Z
[[[[

Z
]]]]〉

hZi �
〈
Z
[[
Z
[[
Z
]]]]〉)

Ji

= s3


 0 �+ � h�i

hk�1i

� + �
hk�1i
h�i


 ;

and

� =
〈
�
[[
k�1

]]2〉
�
〈
k�1

〉 〈[[
k�1

]][[
�
]]〉

� =
〈
k�1

[[
�
]]2〉

� h�i
〈[[
k�1

]][[
�
]]〉

:

For the particular choice

�(x�) = 1 + a1 cos(�x
�) + a2 sin(�x

�) and,

k(x�) =
1

1 + b1 cos(�x�) + b2 sin(�x�)
;

it turns out that J1W
(0) = 0 implies W

(0)
1 = W

(0)
2 . In addition,

C(1) = s3
(a1 � b1)

2 + (a2 � b2)
2

4�2


0 1

1 0


 ;

and W(0) is in the null space of J2
〈
Z
[[
Z
]]〉

(J1)
2
〈
Z
[[
Z
]]〉

J2. Therefore, W
(0)
1 satis�es

W
(0)
1x̂ = s3

(a1 � b1)
2 + (a2 � b2)

2

4�2
W

(0)
1 ;
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which has the solution

W
(0)
1x̂ = exp

(
s3x̂

(a1 � b1)
2 + (a2 � b2)

2

4�2

)
G(0)(s); (5.22)

where G(0)(s) is the Laplace transform of g(0)(t). Now, the inverse Laplace trans-

form of the function exp(s3) does not exist [12], and only if a1 = b1 and a2 = b2, or

equivalently, �(x�) = 1=k(x�), will this non-invertible term go away. However, when

�(x�) = 1=k(x�), multiple-scale analysis is not necessary because the linear wave equa-

tion admits an exact solution. The presence of non-invertible terms means that the

Laplace-MS method cannot be used to generate solutions that account for behaviors

on the x̂ scale. If we were trying to use the Laplace transform to solve a nonphysical

problem, the presence of non-invertible terms would not be surprising; it is therefore

curious these terms appear in the solution to the linear wave equation.

Replacing the non-invertible exponential term in (5.22) with a truncated version

of its power series expansion seems promising at �rst. After all, truncating the power

series produces a polynomial in s, which is perfectly Laplace-invertible. However, the

truncated power series will contain secular terms proportional to x̂ so this remedy is

really no better than the solution obtained via a multiple-scale analysis involving x�

and x only (neglecting x̂).

There is an interesting connection between the appearance of these non-invertible

terms and the multiple-scale analysis in Chapter 4. Performing the usual multiple-

scale analysis with stretched spatial scales instead of slow temporal scales, produces

long-term evolution equations with three t-derivatives instead of three x-derivatives

(refer to equation (4.13)). A Laplace transform with respect to t would turn this

strange PDE into a �rst-order ODE in x , and we would also obtain non-invertible

terms like exp(s3). This fact suggests that the presence of non-invertible terms in the

Laplace-MS method is the manifestation of the missing boundary condition diÆculty

in the usual multiple-scale method. In all the examples that we have studied, the power
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of s in the non-invertible term matches the order of the derivative in the long-term

evolution equation that causes the missing boundary condition diÆculty.

5.1.7 Recovering boundary conditions

Even though the Laplace-MS method cannot be used to �nd solutions to (5.1) that

take into account the long-term e�ects of the 
uctuations in A(x�) and B(x�), it

can be used to recover boundary conditions like the reduced multiple-scale analysis in

Section 4.1.8. For example, notice that the noninvertible term in (5.22) goes away

when we substitute x = x̂ = 0. Once the troublesome term is gone, we can apply the

inverse Laplace transform to recover the values of u at x = 0.

Rather than keeping the stretched spatial scales in the Laplace-MS analysis and

hoping that the noninvertible terms will go away when we substitute x = 0, a simpler

approach is to give up using stretched spatial scales in our asymptotic expansion for

U(x; s; �). Without these stretched scales, we cannot avoid obtaining secular terms

proportional to x in our solution. These secular terms limit the region of validity of the

solution, but as we are only concerned with the values at x = 0, they don't matter.

Let us calculate the recovered boundary information for (5.1) with zero initial

conditions and

u1(0; t; �) = g(t; �) = g(0)(t) +O(�):

We re-expand the solution as

U(x; s; �) = R(0)(x; s) + R(1)(x�; x; s) +O(�2);

using R(i) instead of U(i) to avoid confusion with the previous multiple-scale expan-

sion (5.3). We follow the de�nitions and method outlined in Section 5.1.5 to obtain

R(0)(x; s) = e�hZixR(0)(0; s) =
[
J2e

��1x � J1e
��2x

]
R(0)(0; s):

As we discussed earlier, we do not want exp(��2x) in the solution because it is

not Laplace-invertible. Therefore, we should restrict J1R
(0)(0; s) = 0. The �rst
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component of R(0)(0; s) is equal to G(0)(s), the Laplace transform of the boundary

condition, so,

R(0)(0; s) =


 1

�j11=j12


G(0)(s);

where jmn refers to the m-n entry of J1. This procedure can be repeated to ob-

tain higher-order corrections to the recovered boundary information. It can also be

used to recover boundary information for problems with nontrivial initial conditions,

although each system of homogenized ODEs will be inhomogeneous. We have de-

veloped Mathematica notebooks capable of performing these tedious calculations to

any desired order of �. Once U(0; s; �) is calculated to the desired accuracy, we just

need to apply the Laplace inversion to obtain the recovered boundary information in

physical variables.

For example, let us recompute the missing boundary information for the two ex-

amples presented in Section 4.1.8. The boundary information will be calculated for

the linear wave equation with

�(x�) = 1 + 0:5 cos(�x�)� 0:3 sin(�x�) and

k(x�) =
1

1� 0:1 cos(�x�) + 0:25 sin(�x�)
;

and the given boundary condition u1(0; t; �) = 1 � cos t + O(�). For the signaling

problem (no initial conditions), the Laplace-MS method predicts that

u2(0; t; �) = 1� cos t � �
201 sin t

400�
+ �2

399361 cos t

320000�2
+O(�3): (5.23)

This recovered boundary information matches our previous computation (4.18) using

multiple scales alone.

In the presence of the initial conditions

u(x; 0; �) =


sin(�x)

0


+O(�);
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the recovered boundary information via the Laplace-MS method is

u2(0; t; �) =1� cos(t)� sin(�t) + �

(
cos(�t)

4
�

201 sin t

400�

)

+ �2
(
52639�t cos(�t)

320000
+

399361 cos t + 209161�2 sin(�t)

320000�2

)
+O(�3):

(5.24)

Again, equation (5.24) matches (4.17), the recovered boundary information for the

same problem from Section 4.1.8.

We end this section by demonstrating the recovery of boundary information for

a problem in which B(x�) 6= 0. Consider Maxwell's equations specialized for plane

polarized waves, propagating in a one-dimensional medium. If the current density is

linearly related to the electric �eld, the governing equations may be expressed in the

form (5.1), where

A(x�) =


 0 "(x�)�1

�(x�)�1 0


 and B(x�) =


�(x�) 0

0 0


 :

Here, "(x�) (di�erent from �), �(x�), and �(x�) are the dielectric constant, perme-

ability, and conductivity, respectively. The �rst dependent variable, u1(x; t; �), is the

electric �eld, and the second is the magnetic �eld. All variables have been appropriately

nondimensionalized. (These equations are derived in [19] for a nonlinear medium.)

Suppose we have a signaling problem in which u1(0; t; �) = g(t; �) = g(0)(t)+O(�)

and u(0)(x; 0) = 0. The matrix Z = A�1(sI + B) has the average value

hZi =


 0 h�i s

h"i s + h"�i 0


 :

After some algebra, we �nd that

U
(0)
2 (0; s) =

(
s h"i+ h"�i

s h�i

)1=2

G(0)(s):
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Applying an inverse Laplace transform, the recovered boundary information is

u
(0)
2 (0; t) = �

√
h"i

h�i

∫ t

0

e��� (I0(��) + I1(��)) g
(0)(t � �)d�;

where In(x) is the modi�ed Bessel's function of the �rst kind, and � = 2 h"�i = h"i.

Performing this calculation using the usual multiple-scale method requires much more

algebra.
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Chapter 6

CONCLUSIONS

6.1 Summary of results

We began this paper by asking the question, \How do boundary conditions a�ect the

multiple-scale analysis of hyperbolic conservation laws?"

For systems of hyperbolic conservation laws without rapid spatial 
uctuations,

we have demonstrated how to construct the solution to an initial-boundary value

problem through a judicious choice of temporal and spatial scales. The key �nding

from Chapter 2 is that in addition to the slow temporal scales traditionally used for

an initial-value problem, stretched spatial scales should be used for waves emanating

from the boundary. Consistency conditions involving both slow temporal scales and

stretched spatial scales should be solved under the assumption that these scales are

independent, instead of transforming back to more convenient physical coordinates, in

which these extra scales are no longer independent.

For systems of hyperbolic conservation laws with rapid spatial 
uctuations, we have

highlighted how the diÆculty of missing boundary conditions arises whens solving an

initial-boundary value problem, and demonstrated how to overcome it. We used two

di�erent methods in our analysis: the �rst the usual multiple-scale method, the second

a combination of Laplace transforms and multiple scales (the Laplace-MS method).

Using either method, the procedure for recovering boundary information is the same:

1. Use a reduced set of scales to solve the original problem, thereby eliminating the

need to solve long-term evolution equations (consistency conditions),
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2. generate a temporary solution, ignoring the fact that it has a relatively small

region of validity,

3. and extract the necessary boundary information to solve the long-term evolution

equations.

We applied this procedure to both linear and nonlinear problems in Chapter 4, using

the usual multiple-scale method.

In Chapter 5, we discovered that the missing boundary condition diÆculty manifests

itself through the Laplace-MS analysis in the form of non-Laplace-invertible terms, and

so the Laplace-MS method cannot be used to obtain solutions that account for long-

term behaviors like di�usion or dispersion. However, the Laplace-MS method can be

used to recover boundary information, and requires much less algebra than the usual

multiple-scale method for linear problems with B(x�) 6= 0. The fact that the Laplace-

MS method gives the same results as the usual multiple-scale method is to be expected

since one can usually interchange derivatives and integrals with respect to x and t.

We have seen that the recovered boundary information will contain secular terms

in t when the initial conditions are nontrivial. These secular terms limit the region

of validity of the recovered boundary information. Fortunately, for linear problems,

we can overcome this diÆculty with the aid of superposition. By partitioning an

initial-boundary value problem into the sum of an initial-value problem and a signaling

problem, one can use the recovered boundary information for a signaling problem,

which will not contain secular terms, to solve the long-term evolution equations.

The multiple-scale analysis for nonlinear problems (3.3) is no more conceptually

diÆcult, although there are a few procedural complications. First, the linear operator

that governs the x�-homogenized equations at every order of � is likely to represent

a pair of essentially coupled equations when B(x�) is nonzero. This coupling causes

the general solution to involve Bessel functions, and it obscures the construction of



99

consistency conditions. Second, initial-boundary value problems for nonlinear PDEs

cannot be decomposed into an initial-value problem and a signaling problem. The

recovered boundary information for a problem with nontrivial initial conditions is likely

to contain secular terms proportional to t, which limit the region of validity of the

asymptotic expansion. However, since the appearance of di�usion is governed solely

by the linear part of the problem, and to this date we have never encountered a physi-

cally relevant problem that includes di�usion, we argue that the consistency conditions

(long-term evolution equations) for physically relevant nonlinear problems will not in-

clude di�usion. Instead, they will form a pair of �rst-order, quasilinear PDEs. As the

order of these consistency conditions matches the original partial di�erential equation,

there is a good chance that no additional boundary conditions are needed to solve the

consistency conditions.

6.2 Future work

Our current top priority is to build an arsenal of physically relevant problem that are

amenable to these solution techniques. We would be especially interested to �nd a

counterexample to our theory in the previous paragraph|a nonlinear problem that

exhibits di�usion. The long-term evolution equations for such a problem would form

a pair of coupled Burgers' equations, and �nding their solution would necessitate the

recovery of boundary information.

Since many physical situations are modeled on �nite domains, we want to extend

this work to problems with more than one boundary. The presence of two boundaries,

say x = 0 and x = L, should not pose any greater conceptual diÆculties than one.

Another obvious way to extend this work is to generalize our results to problems

in more than one spatial dimension, and to systems of more than two conservation

laws. Interesting resonance patterns have been observed in systems of three hyper-
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bolic conservation laws [17], and these resonances may have signi�cant implications

on the boundedness of solutions. Furthermore, we have not considered hyperbolic

conservation laws with source terms. Source terms would also have a considerable

e�ect on the boundedness of solutions. (Keep in mind that we are referring to the

boundedness of perturbations to steady-state solutions, which implies the stability of

these steady-state solutions.)

Throughout this paper, we have only considered problems with periodic 
uctua-

tions on the x� scale. We have done so purely for convenience. The same methods

and procedures apply to non-periodic 
uctuations, as long as the averaging operators

presented in Appendix A are still well-de�ned. In fact, the periodicity of the 
uc-

tuations introduces the possibility of resonant interactions between waves traveling

through the medium and the medium itself (Section 3.3). In the more distant future,

we see that these methods could also be applied to hyperbolic conservation laws with

random 
uctuations. The averaging operators would have to be modi�ed to describe

the cumulative e�ect of random 
uctuations based on statistical measurements of

those 
uctuations.
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Appendix A

AVERAGING OPERATORS

As we will be dealing with functions that vary on the fast spatial scale x� = x=�,

we need to introduce the following operators.

ha(x�)i
def
= lim

s!1

1

2s

∫ s

�s

a(s)ds fa(x�)g
def
= a(x�)� ha(x�)i

[[
a(x�)

]] def
=

∫ x�

s

fa(�)gd� where s is chosen such that hfa(x�)gi = 0

The averaging operator h�i gives the average value of a function over the entire x�-

domain. It is a linear operator that produces constants or functions that are inde-

pendent of x�. For a function b(x�) with period 2P , the averaging operator is more

conveniently de�ned as

hb(x�)i
def
=

1

2P

∫ P

�P

b(s)ds:

The f�g operator generates the 
uctuating part of a function: the part of the function

that has a zero average. Finally, the
[[
�
]]
operator gives the integral of the 
uctuating

part of a function, where the constant of integration is chosen such that the average

of the integral of the 
uctuating part is zero. (Keep in mind that fa(x�)g is still a

function of x�, whereas ha(x�)i is not.) When any of these operators is applied to a

matrix, it is understood that the operation is performed element-wise.

We now present some interesting and useful properties of these averaging opera-

tors. In the following discussion, it is understood that a = a(x�) and b = b(x�) are

integrable, although not necessarily periodic or di�erentiable with respect to x�.

Property 1
d

dx�
[[
a
]]
= fag
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This proposition is a direct consequence of the fact that
[[
�
]]
is an integral operator.

The function a(x�) does not have to be di�erentiable, only integrable.

Property 2

[[
d

dx�
a(x�)

]]
=

d

dx�
[[
a(x�)

]]
for all di�erentiable a(x�)

To prove this property, we use the de�nition of the
[[
�
]]
operator:

[[
d

dx�
a(x�)

]]
=

∫ x�

s

a0(�)d� = a(x�)� a(s);

where s is chosen such that〈[[
d

dx�
a(x�)

]]〉
= ha(x�)� a(s)i = ha(x�)i � a(s) = 0:

Substituting a(s) = ha(x�)i,[[
d

dx�
a(x�)

]]
= a(x�)� ha(x�)i = fa(x�)g =

d

dx�
[[
a
]]
:

In e�ect, this property allows us to interchange di�erentiation and integration. It is

the only property listed here that requires a(x�) to be di�erentiable.

Property 3
[[
a
]][[

b
]]
=
[[[[

a
]]
fbg+ fag

[[
b
]]]]

+
〈[[
a
]][[

b
]]〉

Proof.

[[
a
]][[

b
]]
= f

[[
a
]][[

b
]]
g+

〈[[
a
]][[

b
]]〉

f
[[
a
]][[

b
]]
g =

d

dx�
[[[[

a
]][[

b
]]]]

Use Property 1

Use Property 2 =

[[
d

dx�
([[
a
]][[

b
]])]]

Use Property 1 =
[[[[

a
]]
fbg+ fag

[[
b
]]]]

Note: Although this property makes use of Property 2, it does not require a(x�)

or b(x�) to be di�erential because if these functions are integrable, then
[[
a
]][[

b
]]
is

di�erentiable.
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Property 4
〈[[
a
]]
a
〉
= 0 for all integrable, scalar functions a(x�).

Proof.

〈[[
a
]]
a
〉
=
〈[[
a
]]
(hai+ fag)

〉
= hai

〈[[
a
]]〉

+
〈[[
a
]]
fag

〉
=
〈[[
a
]]
fag

〉
Use Property 1 =

〈
1

2

d

dx�

([[
a
]]2)〉

Use Property 3 =
1

2

〈
d

dx�

(
2
[[[[

a
]]
fag

]]
+
〈[[

a
]]2〉)〉

=
〈
f
[[
a
]]
fagg

〉
= 0

Property 5
〈
a
[[
b
]]〉

= �
〈[[
a
]]
b
〉

We prove this statement by applying Property 4 to the equality

〈[[
a + b

]]
(a + b)

〉
=
〈[[
a
]]
a
〉
+
〈[[
a
]]
b
〉
+
〈[[
b
]]
a
〉
+
〈[[
b
]]
b
〉
:

Since the averaging operator involves an integral, this property is really a manifestation

of integration by parts. However, one can de�ne the averaging operator without

mention of integrals and the result will still be true. (Simply de�ne h�i as a linear

operator such that a(x�) = hai+ fag and h�i = � for all constants �.)

It is very important to remember that Property 4 does not hold for matrices because

its proof relies on the commutative property of scalar multiplication. The expression〈
A
[[
A
]]〉

appears many times throughout this paper, and this expression is not zero

if A(x�) is a matrix. The most that we can say about
〈
A
[[
A
]]〉

is that if A(x�) is

a square, integrable matrix, then the trace of
〈
A
[[
A
]]〉

is zero. (One can prove this

quickly using some linear algebra and Properties 4 and 5.)

However, Property 5 does hold for matrices. For any matrices square matrices

A(x�) and B(x�) of the same size,

〈
A
[[
B
]]〉

= �
〈[[
A
]]
B
〉
:
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In particular, if A = B, we see that

〈
A
[[
A
]]〉

= �
〈[[
A
]]
A
〉
:

Finally, repeated applications of Property 5 yields this result.

Property 6
〈
a
[[[[

b
]]]]〉

= �
〈[[
a
]][[

b
]]〉

=
〈[[[[

a
]]]]

b
〉
for all integrable a(x�) and b(x�)
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Appendix B

NUMERICAL METHODS

In this appendix we give further details about the two numerical methods used

throughout this paper: a spectral solver, and a �nite volume method.

B.1 CLAWPACK

CLAWPACK (Conservation LAWs PACKage), written by Randall J. LeVeque, is a

package of Fortran routines that numerically solves hyperbolic systems of conservation

laws. (See [24] and [23].) As it is a �nite volume method, it can be used to calculate

solutions that truly conserve the appropriate quantities. The fundamental unit of

CLAWPACK is a user-supplied routine that solves a Riemann problem|an initial-value

problem with piece-wise constant data. CLAWPACK handles everything else: time-

stepping, 
ux corrections using 
ux limiters, even adaptive mesh re�nement (with

AMRCLAW). It is available on the web at

http://www.amath.washington.edu/~rjl/clawpack.html.

In this paper, we have employed CLAWPACK to solve the linear system of equations

ut + A(x=�)ux = 0; (B.1)

where A(x=�) is a periodic function and 0 < � � 1. The Riemann solver that we

have implemented assumes the values of A(x�) are constant within each �nite volume

cell, which in turn implies that the wave speeds are di�erent in neighboring cells. This

assumption seems to cause the built-in 
ux limiting routines of CLAWPACK to produce
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solutions that grow exponentially in time. Since our analytic results predict that the

dispersive e�ects due to the cumulative 
uctuations in A(x�) only show up for large

time, this exponential growth is a serious problem.

As we pointed out in Chapter 3, for some choices of A(x�), the solution will

naturally grow exponentially in time, but we are not referring to these cases. In fact,

the linear wave equation with

Awaves(x
�) =


 0 1=�(x�)

k(x�) 0




has a positive de�nite, conserved quantity,

E(t) =

∫ L

�L

[
�u21 + u22=k

]
dx; (B.2)

when solved on a periodic domain �L < x < L (or with zero Dirichlet boundary

conditions). In our experiments, we used E(t) as one indicator of the accuracy of

the solution calculated by CLAWPACK. We found that none of the built-in 
ux lim-

iting routines gave a satisfactory answer. We also implemented a transmission-based

limiter1 devised by Fogarty in [14] and [15], but this scheme seemed to limit 
uxes

too aggressively, causing the solution to decay exponentially. During a private com-

munication, Dr. LeVeque suggested that the problem might be related to the fact

that CLAWPACK does not solve the wave equation in a manner consistent with its

conservative form,

�(x�)wtt � (k(x�)wx)x = 0:

(Recall that we have used u1 = wt and u2 = �kwx to convert the second-order PDE

to a system of �rst-order PDEs.)

We found that by far the most satisfactory solution to (B.1) can be obtained by

turning o� CLAWPACK's built-in 
ux limiting, and increasing the spatial resolution

1The transmission-based limiter works well in situations in which the properties of the medium are

vastly di�erent from one cell to the next. It works by breaking up each wave into its transmitted and

re
ected parts, and comparing the transmitted parts of waves in each cell with their neighbors.
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until the solution is largely independent of spatial resolution. For (B.1), increasing the

spatial resolution does more than the usual reduction of error; as the width of cells

decreases, the properties of the medium become more uniform from cell to cell.

B.2 Spectral solver

The other numerical method that we have used in this paper is loosely based on the

ideas behind spectral methods. Essentially, we solve the system of ordinary di�erential

equations that results when we assume the solution is a truncated Fourier series.

Consider the system of equations (B.1) with periodic A(x=�) on the domain �1 <

x < 1 with periodic boundary conditions. If the initial conditions u(x; 0) are periodic,

then the solution will also be periodic for all t > 0. We can therefore write a Fourier

series expansion for the solution:

u(x; t) =

1∑
n=�1

v(n)(t) cos(n�x) + w(n)(t) sin(n�x): (B.3)

Plugging (B.3) into (B.1), we see that the amplitudes v(n)(t) and w(n)(t) are governed

by an in�nite system of ordinary di�erential equations. The coupling of the amplitudes

is governed by A(x=�).

Equation (B.3) suggests a simple approximation to u: truncate the Fourier expan-

sion by de�ning

~u(x; t) =

M∑
n=m

v(n)(t) cos(n�x) +w(n)(t) sin(n�x): (B.4)

Now instead of an in�nite system of ordinary di�erential equations, we obtain a system

of 2(M �m + 1) di�erential equations governing the amplitudes (in much the same

way that we obtained a system of equations in Section 3.3). The initial conditions for

these ODEs comes from a similar truncated Fourier expansion of the initial conditions

to the PDE. The system of ODEs is linear and has constant coeÆcients, so it can be

easily solved.
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We implemented this numerical method using Mathematica. Although Mathemat-

ica can perform symbolic calculations, in this case the required matrix exponentiation

is too computationally intensive for large systems of ODEs. Instead, we have used

Mathematica's arbitrary precision arithmetic to calculate solutions for large t.

We expect that as more terms are incorporated into the truncated Fourier expan-

sion, the approximation becomes more accurate. But how many Fourier modes should

we include? As an illustration, we solved (B.1) with

A�1test(x
�) =


1 + 0:5 sin(�x�) 2

2 1 + 0:25 sin(�x�)




with the initial condition

u(x; 0) =


sin(�x)

0


 ;

using m = �200 and M = 200 in the truncated Fourier series (B.4). We used 64-

digit arithmetic. Figure B.1 shows the amplitudes of each mode on a logarithmic

scale, when t = 500. There are four dots for each wavenumber because we plot the

amplitudes of the cosine and sine for both ~u1(x; t) and ~u2(x; t). Also, notice that

there are gaps in the graph, indicating that certain wavenumbers are absent from

the solution. These gaps are a result of our monochromatic initial condition and

A(x=�)|with � = 0:1, the initial wave with wavenumber � excites only the waves

with wavenumbers : : : ;�19�;�9�; �; 11�; 21�; : : : .

The most important feature of Figure B.1 is that the amplitudes decay exponen-

tially with increasing wavenumber. If we continue the trend, we see that the magnitude

of the �rst neglected Fourier mode is approximately 10�10. If we are satis�ed with a

solution accurate to 10�5, we only need to set m = �50 and M = 50 in our truncated

Fourier series.

We have also used this numerical method to solve the linear wave equation. For a

periodic boundary problem, this spectral method is preferable to CLAWPACK because
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Figure B.1: Amplitudes of Fourier modes present in a spectral solution to the linear

wave equation at t = 500.

it is able to conserve E(t) perfectly. In general, spectral numerical techniques are

typically much more accurate than their �nite di�erence counterparts. However, they

are limited to problems with periodic boundary conditions.
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Sept 1992{June 1996

� Rank in class: 2nd

� Giovanni Fellowship, 1995{96

� Highest Score on the Actuarial Examination, May 1994

TEACHING EXPERIENCE

University of Washington, Seattle, Washington

� Teaching Assistant for Calculus I (Math 124), Autumn 1996, Winter 1998.

� Lecturer for Applied Linear Algebra and Numerical Analysis (Amath 352), Spring

and Summer 1998, Summer 1999.

Amath 352 is a Matlab-based introduction to scienti�c computing for upper-level

undergraduates.

� Lecturer for Communication in the Mathematical Sciences (Amath 500D), a new

course that I developed as a Huckabay Teaching Fellow under the supervision of

my mentor, Dr. Randall J. LeVeque
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� Lecturer for Introduction to Methods in Applied Mathematics III (Amath 403),

Spring 1999. This course surveys the analytical techniques used to solve partial

di�erential equations.

� Lecturer for Introduction to Methods in Applied Mathematics I (Amath 401),

Fall 1999. We learned vector calculus and complex analysis in this course.

� Participated in a elementary math curricula comparison project (1999{2000),

sponsored by the NSF.

Northshore School District, Seattle, Washington

� Northshore Outreach Program volunteer, Spring and Summer 1998.

As a member of an Applied Mathematics Clinic project, I helped to assess K{6

mathematics curricula under review by the Northshore school district.

� Facilitator for a summer institute to help high-school teachers infuse writing into

math and science curricula, Summer 2000. Institute director: Gail Robbins.

RESEARCH EXPERIENCE

Field of specialty: Perturbation theory (multiple-scale analysis), the theory of homog-

enization, and partial di�erential equations

College of William and Mary, Williamsburg, Virginia

� Investigation of the factorization of almost-periodic matrix functions arising from

Weiner-Hopf integral equations, July{August 1995. Advisor: Dr. Ilya Spitkovsky.

Sponsored by the National Science Foundation under the Research Experiences

for Undergraduates (REU) program.

University of Washington, Seattle, Washington

� Study of mathematical issues related to the turbulent combustion of gases,

Jan{Dec 1997. Advisors: Dr. George Kosaly, Dr. James Riley (Mechanical

Engineering department) Sponsored by the Department of Defense (DOD) and

Gas Research Institute (GRI).
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� Thesis work on boundary-value problems for systems of hyperbolic conservation

laws with rapidly 
uctuating quantities using the method of multiple scales, Jan

1998{present. Advisor: Dr. Jirair Kevorkian.

� Modeling of a mode-locking optical �ber laser, June 1999{present. Collaboration

with Dr. Nathan Kutz and Arnold D. Kim.

PUBLICATIONS

1. I. Spitkovsky and D. Yong, Almost periodic factorization of certain block trian-

gular matrix functions, Math. Comp., 69 (2000), 1053{1070.

SELECTED WORK EXPERIENCE

Kumon Math and Reading Centers, Sacramento, California

Head classroom assistant and Computer consultant, Fall 1987{Present.

� Responsible for the purchase, set-up and maintenance of all computer equipment.

� Deployed a database to manage all student, employee records.

� Responsible for the design of monthly newsletter, advertising and teaching ma-

terials.

� Additional duties: tutoring, employee training

Environmental Systems Research Institute, Inc., Redlands, California

Team leader for clinic project, Sept 1995{July 1996.

� Team leader for a collaborative project was by the Mathematics Clinic Program

at Harvey Mudd College. Advisor: Dr. Lisette de Pillis.

� Project goal: to design, test and code eÆcient algorithms to solve real-world

shortest-path problems for geographical information systems (GIS).

Harvey Mudd College, Claremont, California

Editor for the scholarly journal Interface and newsletter CODEE, Sept 1994{July 1996

� Responsible for the purchase, set-up and maintenance of computer equipment.
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� Created a searchable Web index of back-issues.

� Additional duties: staÆng, manuscript editing, layout design, typesetting, design

of Web pages

COMPUTER SKILLS

� Languages: C++, Fortran, Assembly, Perl, Scheme (Lisp)

� Mathematics: Matlab, Mathematica, Maple V

� Database: Microsoft Access, SQL

� Publishing: Framemaker, Pagemaker, HTML, InDesign, Illustrator

� Operating Systems: Windows 9x, NT, Unix, Solaris

� Experience with parallel computing (SGI Power Challenge Array)

� Familiar with system administrative duties for Sun workstations

SPECIAL SKILLS

� American Red Cross certi�cations: Emergency Responder, CPR

� Knowledge of Chinese and Spanish

� Avid interpreter of Brahms' piano works

VOLUNTEER WORK

� Catholic Community Services

� Volunteer tutoring at True Vine Church of God in Christ

� United Gospel Mission

� InterVarsity Christian Fellowship

� Treasurer for Windermere North Condominiums


