MATH 40 LECTURE 10: BASES, DIMENSION AND RANK

DAGAN KARP

In this lecture we return to our discussion of subspaces. We learn what a basis is, and use it to define the dimension of a subspace. We also revisit the notion of rank, and obtain a second part of the Fundamental Theorem of Line Integrals.

Definition 1. Let S be a subspace of \mathbb{R}^n . A subset $B \subset S$ of vectors in S is called a basis of S if and only if

- (1) B spans S and
- (2) B is linearly independent.

Example 2. Consider the following.

- (1) The vectors $\vec{e}_1, \ldots, \vec{e}_n$ form a basis of \mathbb{R}^n .
- (2) The vectors (1, 0) and (1, 1) are also a basis of \mathbb{R}^2 .

Definition 3. *The vectors* $\{e_1, \ldots, e_n\}$ *are called the* standard basis *of* \mathbb{R}^n *.*

Example 4. Find a basis for span{(1, 2), (2, 7), (-3, -6)}. Note that {(1, 2), (2, 7)} is a linearly independent set, and $(, 3, 6) \in$ span{(1, 2), (2, 7)}. Thus {(1, 2), (2, 7)} is a basis of

 $span\{(1,2), (2,7), (-3,-6)\}.$

Remark 5. We will study a matrix A by searching for bases of the row space, column space and null space of A. How can we do so in practice? Let R be the reduced row echelon form of A. Then the nonzero row vectors of R form a basis of row(A). Also, the leading columns form a basis of col(A). We use the free variables of $R\vec{x} = \vec{0}$ to determine a basis of null(A).

Theorem 6 (Basis Theorem). *Let* S *be a subspace of* \mathbb{R}^n *. Then any two bases of* S *have the same number of vectors.*

Definition 7. *Let* S *be a subspace of* \mathbb{R}^n *. The* dimension *of* S *is the number of elements in any basis of* S.

Example 8.

$$\dim(\mathbb{R}^n) = n.$$

Theorem 9. For any matrix A,

 $\dim \operatorname{row}(A) = \dim \operatorname{col}(A).$

Corollary 10. *The rank of* A *is equal to the dimension of its row space, which is the same as the dimension of the column space of* A.

Date: February 7, 2012.

These are lecture notes for HMC Math 40: Introduction to Linear Algebra and roughly follow our course text *Linear Algebra* by David Poole.

Example 11. Consider

$$\mathsf{A} = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 7 & -6 \end{pmatrix}.$$

We saw above that $\dim \operatorname{col}(A) = 2$, thus $\operatorname{rank}(A) = 2$. Note that we can also determine this from the rows of A. The reduced echelon form of A is

$$\mathsf{R} = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \end{pmatrix}.$$

Thus R *has two nonzero rows. Hence, again,* rank(A) = 2.

Definition 12. *The* nullity of A *is the dimension of the null space of A*,

 $\operatorname{nullity}(A) = \operatorname{dim} \operatorname{null}(A).$

Theorem 13 (Rank-Nullity Theorem). If A is an $m \times n$ matrix, then

 $\operatorname{rank}(A) + \operatorname{nullity}(A) = \mathbf{n}.$

PROOF. Let R be the reduced row echelon form of A. Suppose rank(R) = r. Then R has r leading 1's. Thus, by the Rank Theorem, there are n-r free variables in the homogeneous system $(A|\vec{0})$. Each free variable has a corresponding basis element in the null space of A. Thus dim null(A) = n - r. Therefore

 $\operatorname{rank}(A) + \operatorname{nullity}(A) = r + (n - r) = n.$

Theorem 14 (Fundamental Theorem of Invertible Matrices Part II). Let A be an $n \times n$ matrix. The following are equivalent.

- i A is invertible.
- ii $\operatorname{rank}(A) = n$.
- iii nullity(A) = 0.
- iv The columns of A are linearly independent.
- v The columns of A span \mathbb{R}^n .
- vi The columns of A are a basis of \mathbb{R}^n .
- vii The rows of A are linearly independent.
- viii *The rows of* A *span* \mathbb{R}^n .
 - ix The rows of A form a basis of \mathbb{R}^n .

Proof.

- $(i) \Rightarrow (ii)$ By FTIM I, A is invertible if and only if its reduced row echelon form is I_n . But I_n has n nonzero rows. Thus rank(A) = n.
- $(ii) \Leftrightarrow (iii)$ This holds by the Rank-Nullity Theorem.
- $(ii) \Rightarrow (iv)$ If rank(A) = n, then the linear system $A\vec{x} = \vec{0}$ has no free variables, and hence has only the trivial solution. Therefore the columns of A are linearly independent. Note that, by FTIM I, this also shows that A is invertible.
- $(iv) \Rightarrow (v)$ If the columns of A are linearly independent, then $A\vec{x} = \vec{0}$ has only the trivial solution. Thus, by FTIM I, $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{R}^n$. Therefore every vector \vec{b} can be written as a linear combination of the columns of A.

- $(v) \Rightarrow (vi)$ Suppose the columns of A span \mathbb{R}^n . Then $\dim \operatorname{col}(A) = n$. But $\operatorname{rank}(\mathfrak{a}) = \dim \operatorname{col}(A)$, so $\operatorname{rank}(A) = n$. This is (ii). But we already showed (ii) \Rightarrow (iv). Thus, the columns of A are linearly independent. They also span \mathbb{R}^n by assumption. Therefore they are a basis of \mathbb{R}^n .
- $(vi) \Rightarrow (ii)$

We have now proved $(i) \Rightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (ii) \Rightarrow (i)$. Hence these statements are equivalent. Now, we claim that $\operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{T}})$ for any matrix A. Indeed,

$$rank(A^{\mathsf{T}}) = \dim col(A^{\mathsf{T}})$$
$$= \dim row(A)$$
$$= rank(A).$$

Also, we know that A is invertible if and only if A^T is invertible.

Therefore, we may apply our proven results to A^{T} . But the columns of A^{T} are the rows of *A*. This completes the proof.