
MATH 40 LECTURE 10: BASES, DIMENSION AND RANK

DAGAN KARP

In this lecture we return to our discussion of subspaces. We learn what a basis is, and
use it to define the dimension of a subspace. We also revisit the notion of rank, and obtain
a second part of the Fundamental Theorem of Line Integrals.

Definition 1. Let S be a subspace of Rn. A subset B ⊂ S of vectors in S is called a basis of S if
and only if

(1) B spans S and
(2) B is linearly independent.

Example 2. Consider the following.

(1) The vectors ~e1, . . . ,~en form a basis of Rn.
(2) The vectors (1, 0) and (1, 1) are also a basis of R2.

Definition 3. The vectors {e1, . . . , en} are called the standard basis of Rn.

Example 4. Find a basis for span{(1, 2), (2, 7), (−3,−6)}. Note that {(1, 2), (2, 7)} is a linearly
independent set, and (, 3, 6) ∈ span{(1, 2), (2, 7)}. Thus {(1, 2), (2, 7)} is a basis of

span{(1, 2), (2, 7), (−3,−6)}.

Remark 5. We will study a matrix A by searching for bases of the row space, column
space and null space of A. How can we do so in practice? Let R be the reduced row
echelon form of A. Then the nonzero row vectors of R form a basis of row(A). Also, the
leading columns form a basis of col(A). We use the free variables of R~x = ~0 to determine
a basis of null(A).

Theorem 6 (Basis Theorem). Let S be a subspace of Rn. Then any two bases of S have the same
number of vectors.

Definition 7. Let S be a subspace of Rn. The dimension of S is the number of elements in any
basis of S.

Example 8.
dim(Rn) = n.

Theorem 9. For any matrix A,

dim row(A) = dim col(A).

Corollary 10. The rank of A is equal to the dimension of its row space, which is the same as the
dimension of the column space of A.
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Example 11. Consider

A =

(
1 2 −3
2 7 −6

)
.

We saw above that dim col(A) = 2, thus rank(A) = 2. Note that we can also determine this from
the rows of A. The reduced echelon form of A is

R =

(
1 0 −3
0 1 0

)
.

Thus R has two nonzero rows. Hence, again, rank(A) = 2.

Definition 12. The nullity of A is the dimension of the null space of A,

nullity(A) = dimnull(A).

Theorem 13 (Rank-Nullity Theorem). If A is an m× n matrix, then

rank(A) + nullity(A) = n.

PROOF. Let R be the reduced row echelon form of A. Suppose rank(R) = r. Then R has r
leading 1’s. Thus, by the Rank Theorem, there are n−r free variables in the homogeneous
system (A|~0). Each free variable has a corresponding basis element in the null space of A.
Thus dimnull(A) = n− r. Therefore

rank(A) + nullity(A) = r+ (n− r) = n. �

Theorem 14 (Fundamental Theorem of Invertible Matrices Part II). Let A be an n × n
matrix. The following are equivalent.

i A is invertible.
ii rank(A) = n.

iii nullity(A) = 0.
iv The columns of A are linearly independent.
v The columns of A span Rn.

vi The columns of A are a basis of Rn.
vii The rows of A are linearly independent.

viii The rows of A span Rn.
ix The rows of A form a basis of Rn.

PROOF.

(i)⇒ (ii) By FTIM I, A is invertible if and only if its reduced row echelon form is In. But In
has n nonzero rows. Thus rank(A) = n.

(ii)⇔ (iii) This holds by the Rank-Nullity Theorem.
(ii)⇒ (iv) If rank(A) = n, then the linear system A~x = ~0 has no free variables, and hence

has only the trivial solution. Therefore the columns of A are linearly independent.
Note that, by FTIM I, this also shows that A is invertible.

(iv)⇒ (v) If the columns of A are linearly independent, then A~x = ~0 has only the trivial so-
lution. Thus, by FTIM I, A~x = ~b has a unique solution for every ~b ∈ Rn. Therefore
every vector ~b can be written as a linear combination of the columns of A.
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(v)⇒ (vi) Suppose the columns of A span Rn. Then dim col(A) = n. But rank(a) = dim col(A),
so rank(A) = n. This is (ii). But we already showed (ii)⇒ (iv). Thus, the columns
of A are linearly independent. They also span Rn by assumption. Therefore they
are a basis of Rn.

(vi)⇒ (ii)

We have now proved (i) ⇒ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (ii) ⇒ (i). Hence
these statements are equivalent. Now, we claim that rank(A) = rank(AT ) for any matrix
A. Indeed,

rank(AT ) = dim col(AT )

= dim row(A)

= rank(A).

Also, we know that A is invertible if and only if AT is invertible.
Therefore, we may apply our proven results to AT . But the columns of AT are the rows

of A. This completes the proof. �
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