MATH 40 LECTURE 11: LINEAR TRANSFORMATIONS

DAGAN KARP

In this lecture, we provide one interpretation of a matrix, giving the notion of matrix greater depth than just an array of numbers.

Definition 1. A linear transformation from \mathbb{R}^n to \mathbb{R}^m is a map $T : \mathbb{R}^n \to \mathbb{R}^m$ such that

- (1) $T(c\vec{v}) = cT(\vec{v})$; and
- (2) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$, for any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ and scalar c.

Remark 2. T is a linear transformation if and only if

$$T(a\vec{u} + b\vec{v}) = aT(\vec{u}) + bT(\vec{v}),$$

for any vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ and any scalars \mathbf{a} and \mathbf{b} .

Example 3. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be given by

$$T(\vec{v}) = 5\vec{v}$$
.

Then for any scalar c,

$$\mathsf{T}(\mathbf{c}\vec{\mathsf{v}}) = 5\mathbf{c}\vec{\mathsf{v}} = \mathbf{c}5\vec{\mathsf{v}} = \mathbf{c}\mathsf{T}(\vec{\mathsf{v}})$$

and

$$T(\vec{u} + \vec{v}) = 5(\vec{u} + \vec{v}) = 5\vec{u} + 5\vec{v} = 5T(\vec{u}) + 5T(\vec{v}).$$

Therefore T *is a linear transformation.*

Example 4. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F(x_1, x_2) = (\sin(x_1), e^{x_2}).$$

On the one hand,

$$F(0,0) + F(\pi/2,0) = (0,1) + (1,1)$$

= (0,2).

On the other hand

$$F((0,0) + (\pi/2,0)) = F(\pi/2,0)$$

= (0,1).

Since $(0,1) \neq (0,2)$, F is not linear.

Definition 5. Let A be an $m \times n$ matrix. The matrix transformation T_A of A is the map $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_A(\vec{X}) = A\vec{x},$$

for any $\vec{x} \in \mathbb{R}^n$.

Proposition 6. For any matrix A, T_A is a linear transformation.

Date: February 9, 2012.

These are lecture notes for HMC Math 40: Introduction to Linear Algebra and roughly follow our course text *Linear Algebra* by David Poole.

PROOF. Let c be a scalar, and $\vec{u}, \vec{v} \in \mathbb{R}^n$. Then

$$T_A(c\vec{v}) = A(c\vec{v}) = cA\vec{v} = cT_A(\vec{v}),$$

and

$$T_A(\vec{u}+\vec{v}) = A(\vec{u}+\vec{v}) = A\vec{u} + A\vec{v} = T(\vec{u}) + T(\vec{v}).$$

Theorem 7. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is the matrix transformation of the $m \times n$ matrix A given by

$$A = (T(\vec{e}_1) \ T(\vec{e}_2) \ \cdots \ T(\vec{e}_n)).$$

PROOF. Let $\vec{x} \in \mathbb{R}^n$. Then

$$\vec{x} = (x_1, \dots, x_n)$$
$$= x_1 \vec{e}_1 + \dots + x_n \vec{e}_n.$$

Therefore

$$T(\vec{x}) = T(x_1 \vec{e}_1 + \dots + x_n \vec{e}_n)$$

$$= T(x_1 \vec{e}_1) + \dots + T(x_n \vec{e}_n)$$

$$= x_1 T(\vec{e}_1) + \dots + x_n T(\vec{e}_n)$$

$$= (T(\vec{e}_1) \quad T(\vec{e}_2) \quad \dots \quad T(\vec{e}_n)) \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$= \Delta \vec{x}$$

Definition 8. T_A *is called the standard matrix of* T *and is denoted* [T].

Example 9. If $T(\vec{v}) = 5\vec{v}$, then $[T] = 5I_n$, since $T(\vec{e}_i) = 5\vec{e}_i$.

Theorem 10. If S is a linear transformation from \mathbb{R}^n to \mathbb{R}^m and T is a linear transformation from \mathbb{R}^m to \mathbb{R}^k , then $S \circ T$ is a linear transformation from \mathbb{R}^n to \mathbb{R}^k and

$$[S \circ T] = [S][T].$$

Definition 11. Let $S,T:\mathbb{R}^n\to\mathbb{R}^n$ be linear transformations. Then S and T are inverse transformations if

$$S \circ T = I_n = T \circ S$$
.

We say that S and T are invertible transformations.

Theorem 12. Let T be an invertible linear transformation. Then [T] is an invertible matrix, and

$$[T^{-1}] = [T]^{-1}$$
.

Definition 13. An invertible linear transformation is called an isomorphism.

Theorem 14. For any linear transformation,

$$\mathsf{T}(\vec{0}) = \vec{0}.$$

PROOF.

$$T(\vec{0}) = T(\vec{0} + \vec{0}) = T(\vec{0}) + T(\vec{0}).$$

Remark 15. Why are linear transformations called linear transformations? Perhaps this is easiest to see in \mathbb{R}^1 . Let $T:\mathbb{R}\to\mathbb{R}$ be a linear transformation. The it is of the form $T(x)=\alpha x$ for some scalar α . This is automatic from the theorem above, since any 1×1 matrix is simply a scalar.

But we can also derive this result from first principles. Let

$$T(1) = a$$
.

Then

$$\alpha = T(1) = T\left(\left(\frac{1}{x}\right)x\right) = \frac{1}{x}T(x).$$

Thus T(x) = a(x) for all $x \neq 0$. But T(0) = 0 by the above, and thus $T(0) = 0 = 5 \cdot 0$. Thus T(x) = ax for all $x \in \mathbb{R}$. Thus the graph of T is a line through the origin of slope a.