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Theorem 1. Let A be a square matrix, let ~x be an eigenvector of A with eigenvalue λ. For any
n ∈ N, ~x is an eigenvalue of An with eigenvalue λn. If A is invertible, this holds for all n ∈ Z.

Remark 2. Let A be as above. If A is invertible, the 1/λ is an eigenvalue of A−1.

PROOF. First, consider the case n ∈ N. We prove by induction. The base case A~x = λ~x
holds by assumption. Now assume Ak~x = λk~x. Then we compute

Ak+1~x = A(Ak~x) = A(λk~x) = λk(A~x) = λk(λ~x) = λk+1~x.

Therefore the result holds for n > 0. The case n = 0 is trivial.
Now consider n = −1. We compute

~x = I~x = (A−1A)~x = A−1(A~x) = A−1(λ~x) = λ(A−1~x).

Since the n = −1 case assumes A−1 exists, A is invertible therefore 0 is not an eigenvalue
of A. Therefore λ 6= 0. Therefore we can solve the above equation, yielding

A−1(~x) =
1

λ
~x.

Thus the result holds if n = −1.
It remains to establish the result in case n < 0. But this follows from an induction

argument similar to the one above. �

Example 3. Again, let A =

(
1 2
1 0

)
. Let ~x =

(
3
3

)
. Compute A4~x.

We use eigenvectors and eigenvalues. As above, the eigenvalues are 2 and −1. These have
eigenvectors ~v1 = (2, 1) and ~v2(−1, 1) respectively. Note that these eigenvectors are linearly
independent, and thus span Rn. In particular, we see(

3
3

)
= 2

(
2
1

)
+

(
−1
1

)
.
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Therefore

A4~x = A4(2~v1 +~v2)

= 2A4~v1 +A
4~v2

= 2(24)~v1 + (−1)4~v2

= 32~v1 +~v2

= 32

(
2
1

)
+

(
−1
1

)
=

(
63
33

)
.

Theorem 4. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Remark 5. The above example shows that it is often very convenient to write a vector
as a linear product of the eigenvectors of A. By the above theorem, if an n × n matrix
has n distinct eigenvalues, then they must form a basis of Rn. Therefore any vector can
be written as a linear combination of the eigenvectors. The general idea here is that of
coordinates.

Definition 6. Let B = {~v1, . . . ,~vk} be a basis of the subspace S ⊂ Rn. Then any vector ~x ∈ S
can be written as a unique linear combination

~x = c1~v1 + · · ·+ ck~vk.
The vector

[~v]B = (c1, . . . , ck)

is called the coordinate vector of ~v in basis B.

Example 7. Let B1 = {~e1,~2} be the standard basis of R2, and let

[~v]B1 = (3, 3).

Now consider the basis B2 = {~v1 = (2, 1),~v2 = (−1, 1)}. In the above example, we have

[~v]B2 = (2, 1).

Definition 8. Let λ be an eigenvalue of A. The algebraic multiplicity of λ is the degree of λ as
a root of the characteristic polynomial. The geometric multiplicity of λ is the dimension of the
eigenspace Eλ.

Example 9. Consider the identity matrix I2. The characteristic equation of I2 is

det(I− λI) =

∣∣∣∣ 1− λ 0
0 1− λ

∣∣∣∣ = (1− λ)2.

Therefore λ = 1 is the only eigenvalue of I, and it is an eigenvalue of algebraic multiplicity 2.
On the other hand, I~x = 1~x for all ~x ∈ R2, and therefore Eλ = R2. Thus λ = 1 has geometric

multiplicity 2.
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