MATH 40 LECTURE 2: PROJECTIONS AND PLANES

DAGAN KARP

In our last lecture we explored the dot product. We begin with a continuation of this
exploration.

1. DOT PRODUCT ANDPROJECTIONS

Theorem 1. For any vectors i and V, we have

-V = |[t] [Vl cos 6,

where 0 is the angle between i and V.

PROOF. Recall the Law of Cosines states that, for the triangle a, b, c,
¢’ = a* +b* —2abcos 0.
Applying this to the triangle i, V, i —V, we have
[ — V1% = [l + 9112 — 2I[]] (9],
Expanding ||t — V||* = (@ — V) - (4 — V) and simplifying gives the result. O
Remark 2. This theorem allows us to compute the angle between any two vectors.

Definition 3. The vectors i and V are orthogonal if and only if i - V = 0.

Remark 4. Now that we have control over the angle between two vectors, we can deter-
mine when two vectors are parallel. Thus, it makes sense to speak of “the direction” of
a vector V. Any scalar multiple of V is parallel to V. But “the direction” is unique. So, we
would like to single out a special vector that is parallel to V and captures the information
of “the direction” of V. This is accomplished by the unit vector in the direction of V.

Definition 5. For any nonzero vector i, the unit vector in the direction of i is

‘S:l

Remark 6. Note that the denominator is nonzero, and this vector is of length one, and is
a scalar multiple of .

=

Now that we understand the angle between two vectors, it brings up a natural geomet-
ric question. Suppose 1l and V are not necessarily pointed in the same direction. How
much of V is pointed in the direction of 1ii? In other words, if we orthogonally project v in
the direction of ii, what do we get?
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FIGURE 1. The projection of V in the direction of i

Theorem 7. For a nonzero vector U, the projection of V in the direction of i is given by
S WV
projy (V) = ———=1i.
u-u
Remark 8. Note that the projection of V in the direction of i is indeed a scalar multiple of
.

PROOF. As illustrated in Figure 1, let 0 be the angle between ii and V. Then
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Since proj; V is in the direction of 1, we simply multiply its length by the unit vector in
the direction of ti to determine proj; V completely. Thus we have

. . u
projz Vv = projg V| m

Example 9. Compute the projection of (1,2, 3) in the directions (0,1,0) and (1,1,0).

2. PLANES IN SPACE

Recall that a plane is determined by one point and one vector in R?. How can we
think about this? Well, R seems to have only 3 dimensions. Any plane has exactly two
dimensions. So, there is one left over. This direction is perpendicular (orthogonal) to the
directions in the plane. See Figure 2.
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FIGURE 2. Derivation of the normal equation of a plane in R3

How can we use this to derive an equation for a plane? The equation of a plane com-
pletely describes which points X € R® are contained in the plane. So, suppose we are
given a vector 1l with is orthogonal to every vector in the plane, and a point p on the
plane. The vector 1 is called the normal vector of the plane.

Let x € R?. How can we tell if x is on our plane? Note that the point X is in the plane if
and only if the vector x —p from p to x is in the plane. Thus, X is in the plane if and only if

n-(x—p)=0.
Let’s name the components of our vectors. Let T = (a, b, c), let our fixed point p have
coordinates p = (X0, Yo, Zo) and let our general point X have coordinates X = (x, y, z).
Thus, we have X is on our plane if and only if
(a,b,c) - (x —%0,Yy — Yo,z —20) =0.

Expanding, we have
ax + by + cz = axp + byp + czo.
Note that the right hand side ax + by, + ¢z is simply a scalar. Call id d. Then we have

ax+by+cz=d|

This is called the normal equation of the plane.

Remark 10. Note that the above equation is linear. We see that every plane can be de-
scribed by a linear equation, and every linear equation describes a plane.

We now see that a plane is determined by a normal vector and a single point on the
plane. How can we construct normal vectors? One convenient tool is a construction
known as the cross product. We will show that given two vectors @ and ¥ in R, their cross
product i x V is orthogonal to both 1 and V.

Definition 11. Let i = (wy,uz,u3) and v = (vq,v2,v3) be vectors in R3. The cross product
of U and V is defined by

U X V= (Uzvs —U3Vvz,Uzvy — U1v3, Ujvy — UgVy).

I find this definition impossible to remember. Instead, there is an easier way to remem-
ber it in terms of determinants.

Definition 12. The determinant of the 2 x 2 matrix ( Ccl 3 ) is

b
d

a ‘:ad—bc.
C
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The determinant of a 3 x 3 matrix can be expressed in terms of determinants of 2 x 2
matrices that appear within the larger matrix.

abc
Definition 13. The determinant of the 3 x 3 matrix | d e f | isdefined by
h 1 j
a b c
d e f|= ff‘—b‘ﬁf'Jrcﬁi
h i j ) )

Remark 14. Using the standard notation 1=(1,0,0), f: (0,1,0) and k = (0,0, 1), we see
that

Lok u; u U u U u
- o ¢ Uz U3 2 W U3 z U up
UXvVv=|1u U uz |=1 +k
V2 V3 Vi V3 Vi V2
V1 V2 V3

= (Uz2v3 — U3V2, U3V — UV3, U1 V2 — UaV7 ).

Proposition 15. ii x V is orthogonal to i and V.

PROOF. Note that
U-(UxV)=v-(ixV)=0. O



