
MATH 40 LECTURE 2: PROJECTIONS AND PLANES

DAGAN KARP

In our last lecture we explored the dot product. We begin with a continuation of this
exploration.

1. DOT PRODUCT ANDPROJECTIONS

Theorem 1. For any vectors ~u and ~v, we have

~u ·~v = ||~u|| ||~v|| cos θ,

where θ is the angle between ~u and ~v.

PROOF. Recall the Law of Cosines states that, for the triangle a, b, c,

c2 = a2 + b2 − 2ab cos θ.

Applying this to the triangle ~u, ~v, ~u−~v, we have

||~u−~v||2 = ||~u||2 + ||~v||2 − 2||~u|| ||~v||.

Expanding ||~u−~v||2 = (~u−~v) · (~u−~v) and simplifying gives the result. �

Remark 2. This theorem allows us to compute the angle between any two vectors.

Definition 3. The vectors ~u and ~v are orthogonal if and only if ~u ·~v = 0.

Remark 4. Now that we have control over the angle between two vectors, we can deter-
mine when two vectors are parallel. Thus, it makes sense to speak of “the direction” of
a vector ~v. Any scalar multiple of ~v is parallel to ~v. But “the direction” is unique. So, we
would like to single out a special vector that is parallel to ~v and captures the information
of “the direction” of ~v. This is accomplished by the unit vector in the direction of ~v.

Definition 5. For any nonzero vector ~u, the unit vector in the direction of ~u is

~u

||~u||
.

Remark 6. Note that the denominator is nonzero, and this vector is of length one, and is
a scalar multiple of ~u.

Now that we understand the angle between two vectors, it brings up a natural geomet-
ric question. Suppose ~u and ~v are not necessarily pointed in the same direction. How
much of ~v is pointed in the direction of ~u? In other words, if we orthogonally project ~v in
the direction of ~u, what do we get?
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FIGURE 1. The projection of ~v in the direction of ~u

Theorem 7. For a nonzero vector ~u, the projection of ~v in the direction of ~u is given by

proj~u(~v) =
~u ·~v
~u · ~u

~u.

Remark 8. Note that the projection of ~v in the direction of ~u is indeed a scalar multiple of
~u.

PROOF. As illustrated in Figure 1, let θ be the angle between ~u and ~v. Then

cos θ =
|| proj~u~v||

||~v||
.

Thus

|| proj~u~v|| = ||~v||(cos θ)

= ||~v||

(
~u ·~v
||~u||||~v||

)
=

~u ·~v
||~u||

.

Since proj~u~v is in the direction of ~u, we simply multiply its length by the unit vector in
the direction of ~u to determine proj~u~v completely. Thus we have

proj~u~v = || proj~u~v||

(
~u

||~u||

)
=

~u ·~v
||~u||

(
~u

||~u||

)
=

~u ·~v
||~u|| ||~u||

~u

=
~u ·~v
~u · ~u

~u. �

Example 9. Compute the projection of (1, 2, 3) in the directions (0, 1, 0) and (1, 1, 0).

2. PLANES IN SPACE

Recall that a plane is determined by one point and one vector in R3. How can we
think about this? Well, R3 seems to have only 3 dimensions. Any plane has exactly two
dimensions. So, there is one left over. This direction is perpendicular (orthogonal) to the
directions in the plane. See Figure 2.
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FIGURE 2. Derivation of the normal equation of a plane in R3

How can we use this to derive an equation for a plane? The equation of a plane com-
pletely describes which points ~x ∈ R3 are contained in the plane. So, suppose we are
given a vector ~n with is orthogonal to every vector in the plane, and a point p on the
plane. The vector ~n is called the normal vector of the plane.

Let x ∈ R3. How can we tell if x is on our plane? Note that the point ~x is in the plane if
and only if the vector x−p from p to x is in the plane. Thus, ~x is in the plane if and only if

~n · (x− p) = 0.

Let’s name the components of our vectors. Let ~n = (a, b, c), let our fixed point p have
coordinates p = (x0, y0, z0) and let our general point ~x have coordinates ~x = (x, y, z).

Thus, we have ~x is on our plane if and only if

(a, b, c) · (x− x0, y− y0, z− z0) = 0.

Expanding, we have
ax+ by+ cz = ax0 + by0 + cz0.

Note that the right hand side ax0 + by0 + cz0 is simply a scalar. Call id d. Then we have

ax+ by+ cz = d .

This is called the normal equation of the plane.

Remark 10. Note that the above equation is linear. We see that every plane can be de-
scribed by a linear equation, and every linear equation describes a plane.

We now see that a plane is determined by a normal vector and a single point on the
plane. How can we construct normal vectors? One convenient tool is a construction
known as the cross product. We will show that given two vectors ~u and ~v in R3, their cross
product ~u×~v is orthogonal to both ~u and ~v.

Definition 11. Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3) be vectors in R3. The cross product
of ~u and ~v is defined by

~u×~v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

I find this definition impossible to remember. Instead, there is an easier way to remem-
ber it in terms of determinants.

Definition 12. The determinant of the 2× 2 matrix
(
a b
c d

)
is∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.
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The determinant of a 3 × 3 matrix can be expressed in terms of determinants of 2 × 2
matrices that appear within the larger matrix.

Definition 13. The determinant of the 3× 3 matrix

 a b c
d e f
h i j

 is defined by

∣∣∣∣∣∣
a b c
d e f
h i j

∣∣∣∣∣∣ = a
∣∣∣∣ e f
i j

∣∣∣∣− b ∣∣∣∣ d f
h j

∣∣∣∣+ c ∣∣∣∣ d e
h i

∣∣∣∣ .
Remark 14. Using the standard notation~i = (1, 0, 0),~j = (0, 1, 0) and ~k = (0, 0, 1), we see
that

~u×~v =

∣∣∣∣∣∣
~i ~j ~k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =~i

∣∣∣∣ u2 u3

v2 v3

∣∣∣∣−~j

∣∣∣∣ u1 u3

v1 v3

∣∣∣∣+ ~k

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Proposition 15. ~u×~v is orthogonal to ~u and ~v.

PROOF. Note that
~u · (~u×~v) = ~v · (~u×~v) = 0. �
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