MATH 40 LECTURE 8: THE FUNDAMENTAL THEOREM OF
INVERTIBLE MATRICES

DAGAN KARP

In our last lecture we were introduced to the notion of the inverse of a matrix, we used
the Gauss-Jordan method to find the inverse of a matrix, and we saw that any linear sys-
tem with an invertible matrix of coefficients is consistent with a unique solution.Now, we
turn our attention to properties of the inverse, and the Fundamental Theorem of Invert-
ible Matrices.

Theorem 1. The following hold.
(a) If A is invertible, then A~ is invertible, and
(AT =A.
(b) If A is invertible and 0 # ¢ € R, then cA is invertible and
1

(cA)™! = (A7),
(c) If A and B are both invertible matrices of the same size, then AB is invertible and
(AB)"' =B A"

(d) For any matrices A and B,
(A+B)" =AT+BT, and
(AB)T =BTAT.
(e) If A is invertible, then AT is invertible and
(AT =(A"D"
(f) If A is an invertible matrix, then A™ is invertible for alln € N, and
(AM = (AT
PROOF.

(a) Note that
AATY=ATHA=L
Thus A~! is invertible, with inverse A.
(b) Note that for any matrices X and Y and scalar c, we have
c(XY) = (eX)Y = X(cY),
whenever the product exists. Thus, we have
cA(A7"/c)=c/c(AA ) =1=(A"TA)c/c = (A" "/c)(cA).
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(c) We must find a matrix X such that
X(AB) = (AB)X =1.
We compute
(B 'A""(AB)=B '(A"'TA)B=B 'IB=B 'B=1
Similarly, ABB~'A~" = I. Thus AB is invertible with inverse B~TA~".
(d) Let A = (ay; and B = (by;). Then AT = (a;;) and BT = (bj;). Then
(A+B)" = (aij+bi;)" = (aji +b;;) =AT +B".
Now, note that
(AB)iTj = (AB)ji
= row;(A) - column;(B)
= columnj(AT) -row;(BT)
=row;(B") - column; (AT)
= (BTAT)y.
(e) Exercise 3.3.15
(f) Induction. O

Theorem 2 (Fundamental Theorem of Invertible Matrices). Let A be an n x n invertible
matrix. TFAE (The Following Are Equivalent.)

(1) A is invertible.

(2) AX = b has a unique solution for every vector b € R™.
(3) AX = 0 has only the trivial solution.

(4) The reduced row echelon form of A is I,.

(5) A is a product of elementary matrices.

PROOF. We will prove (1) = (2) = (3) = (4) = (5) = (1). We proved (1) = (2) in
Lecture 7. Any homogeneous system has the trivial solution, thus (2) = (3). If AX = 0
has only the trivial solution, then the augmented matrix (A0 ) has no free variables. Thus
there are no zero rows in the reduced row echelon form of A. Therefore the reduced
row echelon form of A has n nonzero rows, each with leading term 1, each to the left
of those below. The only such matrix is I,,. Applying an elementary row operation to
A corresponds to multiplying A by the appropriate elementary matrix. Since A can be
reduced to I by elementary row operations, it follows that there are elementary matrices
Eq,..., E; such that

E;---ELA=1
The result follows by solving for A. Finally, any product of elementary matrices is invert-
ible, and thus (5) = (1). O

Theorem 3. Let A be an n x n matrix. If B is an n x n matrix such that either BA = 1 or
AB =1, then A is invertible and B = A~".

PROOF. Suppose BA = 1. We will show A is invertible with inverse B. Consider the
homogeneous linear system AX = 0. Since BA = I, we have

-

B(AX) = (BA)X=IXx=x=0.
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Thus the equation AX = 0 has only the trivial solution. Therefore, by the FTIM, A is
invertible. Thus A~ exists and

B=BI=B(AA ')=(BAJA '=IA"T=A"". O
PROOF (of Gauss-Jordan.) Let Ey,..., E, be elementary matrices corresponding to the
elementary row operations transforming A to I. Then
E.E;---ELA =1L
Therefore A~' = E; - - - E, since inverses are unique by FTIM. Therefore
E,---EI=A"T

and thus our sequence of elementary row operations corresponding to E; through E.
transform [ into A~".



