
MATH 40 LECTURE 8: THE FUNDAMENTAL THEOREM OF
INVERTIBLE MATRICES

DAGAN KARP

In our last lecture we were introduced to the notion of the inverse of a matrix, we used
the Gauss-Jordan method to find the inverse of a matrix, and we saw that any linear sys-
tem with an invertible matrix of coefficients is consistent with a unique solution.Now, we
turn our attention to properties of the inverse, and the Fundamental Theorem of Invert-
ible Matrices.

Theorem 1. The following hold.

(a) If A is invertible, then A−1 is invertible, and

(A−1)−1 = A.

(b) If A is invertible and 0 6= c ∈ R, then cA is invertible and

(cA)−1 =
1

c
(A−1).

(c) If A and B are both invertible matrices of the same size, then AB is invertible and

(AB)−1 = B−1A−1.

(d) For any matrices A and B,

(A+ B)T = AT + BT , and

(AB)T = BTAT .

(e) If A is invertible, then AT is invertible and

(AT )−1 = (A−1)T .

(f) If A is an invertible matrix, then An is invertible for all n ∈ N, and

(An)−1 = (A−1)n.

PROOF.

(a) Note that
A(A−1) = (A−1)A = I.

Thus A−1 is invertible, with inverse A.
(b) Note that for any matrices X and Y and scalar c, we have

c(XY) = (cX)Y = X(cY),

whenever the product exists. Thus, we have

cA(A−1/c) = c/c(AA−1) = I = (A−1A)c/c = (A−1/c)(cA).
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(c) We must find a matrix X such that

X(AB) = (AB)X = I.

We compute

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

Similarly, ABB−1A−1 = I. Thus AB is invertible with inverse B−1A−1.
(d) Let A = (aij and B = (bij). Then AT = (aji) and BT = (bji). Then

(A+ B)T = (aij + bij)
T = (aji + bji) = AT + BT .

Now, note that

(AB)Tij = (AB)ji

= rowj(A) · columni(B)

= columnj(A
T ) · rowi(B

T )

= rowi(B
T ) · columnj(A

T )

= (BTAT )ij.

(e) Exercise 3.3.15
(f) Induction. �

Theorem 2 (Fundamental Theorem of Invertible Matrices). Let A be an n × n invertible
matrix. TFAE (The Following Are Equivalent.)

(1) A is invertible.
(2) A~x = ~b has a unique solution for every vector ~b ∈ Rn.
(3) A~x = ~0 has only the trivial solution.
(4) The reduced row echelon form of A is In.
(5) A is a product of elementary matrices.

PROOF. We will prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1). We proved (1) ⇒ (2) in
Lecture 7. Any homogeneous system has the trivial solution, thus (2) ⇒ (3). If A~x = ~0

has only the trivial solution, then the augmented matrix (A|~0) has no free variables. Thus
there are no zero rows in the reduced row echelon form of A. Therefore the reduced
row echelon form of A has n nonzero rows, each with leading term 1, each to the left
of those below. The only such matrix is In. Applying an elementary row operation to
A corresponds to multiplying A by the appropriate elementary matrix. Since A can be
reduced to I by elementary row operations, it follows that there are elementary matrices
E1, . . . , Er such that

E1 · · ·ErA = I.

The result follows by solving for A. Finally, any product of elementary matrices is invert-
ible, and thus (5)⇒ (1). �

Theorem 3. Let A be an n × n matrix. If B is an n × n matrix such that either BA = I or
AB = I, then A is invertible and B = A−1.

PROOF. Suppose BA = I. We will show A is invertible with inverse B. Consider the
homogeneous linear system A~x = ~0. Since BA = I, we have

B(A~x) = (BA)~x = I~x = ~x = ~0.
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Thus the equation A~x = ~0 has only the trivial solution. Therefore, by the FTIM, A is
invertible. Thus A−1 exists and

B = BI = B(AA−1) = (BA)A−1 = IA−1 = A−1. �

PROOF (of Gauss-Jordan.) Let E1, . . . , Er be elementary matrices corresponding to the
elementary row operations transforming A to I. Then

E1E2 · · ·ErA = I.

Therefore A−1 = E1 · · ·Er since inverses are unique by FTIM. Therefore

E1 · · ·ErI = A−1,

and thus our sequence of elementary row operations corresponding to E1 through Er

transform I into A−1.
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