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The basic ingredients are...

objects
⇓

vectors

collections of objects
(w/specific properties)

⇓
vector spaces

ways to transform
objects
⇓

linear transformations

Euclidean vectors – Rn

Rn =⇒ the set of all ordered n-tuples of real numbers (expressed as
column or row vectors)

�v =





v1

v2
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vn




boldface in 
textbook

vi’s are components
of�v

Euclidean vectors have a length and a direction.
Example
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�
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sets functions

Heart of linear algebra =⇒ study of linear transformations
and their algebraic properties

Definition of a vector space (page 447)

Definition of a linear transformation (page 490)

Definition of a vector space (page 447)

Definition of a linear transformation (page 490)

Remark Note that the def’n of vector space does not say exactly what
vectors are, only what vectors do.

=⇒ example of abstraction

exact substance of an object 
is not so important, only its 

properties and behaviors

powerful technique --- allows us 
to simultaneously prove a result 
is true in a multitude of contexts
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Euclidean vectors – Rn

Rn =⇒ the set of all ordered n-tuples of real numbers (expressed as
column or row vectors)
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Euclidean vectors have a length and a direction.
Example
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�

�v =
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�

vector addition

�u + �v =





u1 + v1
u2 + v2

...
un + vn





scalar multiplication

�v =





cv1
cv2
...

cvn





Note: letters at end of alphabet are usually reserved for vectors, and letters
at start are usually reserved for scalars.

Rn with vector addition and scalar multiplication as
defined above is a vector space!
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Geometric interpretation in R2

Vector addition:

�u �v

�u+�v

head-to-tail rule

place tail of�v at head of �u

�u

�v
�u+�v

parallelogram rule

place tails of �u and�v at same point

Food for thought:
What is the other diagonal of the
parallelogram in terms of �u,�v?

Scalar multiplication:

�v

c�v

c > 1

�v
c�v0 < c < 1

�v

c�v
c < 0

Linear combinations
Revisiting our earlier example, note that

�
2
3

�
= 2

�
1
0

�
+ 3

�
0
1

�
.
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In this case, we say that

�
2
3

�
is a linear combination of

�
1
0

�
and

�
0
1

�
.

Definition A linear combination of vectors �v1,�v2, . . . ,�vk is any vector
of the form

c1�v1 + c2�v2 + · · · ck�vk,

where c1, c2, . . . , ck are scalars.

Can we represent

�
2
3

�
by other linear combinations besides the one given

above?

e.g.,

�
2
3

�
= 2

�
5
6

�
+ (−1)

�
4
3

�
+ (−4)

�
1
3
2

�
.

Question (to be addressed down the road):
Given vector �v and vectors �v1,�v2, . . . ,�vk, is �v a linear

combination of �v1,�v2, . . . ,�vk?
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Dot product

Geometric concepts of length and orthogonality of vectors in Rn can be
defined algebraically using the dot product.

Definition For �u,�v ∈ Rn, the dot product of �u and �v is

�u ·�v = u1v1 +u2v2 + · · ·+unvn.

operation on two vectors that produces a scalar value

To define the length of a vector, think about what it should be for a simple
vector in R2:

x

y

�v

(2, 3)

�v =
�

2
3

�
length =

�
22 +32

=
√

�v ·�v

By Pythagorean Thm,

Definition The length of �v in Rn is denoted ��v� and is equal to

��v� =
√

�v · �v =
�

v2
1 + v2

2 + · · · + v2
n.

always a nonnegative value

Remarks

• The only vector with length 0 is the zero vector �0 =

�
0
...
0

�
.
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• Length of a scaled vector:

for scalar c, �c�v� =
�

(c�v) · (c�v) =
�

c2(�v · �v) = |c| ��v�

• Special name for vectors of length 1: unit vectors

examples:

�
0
1

�
,




1/2√
2/2

−1/2





• Given any vector in Rn, can we always scale it to get a unit vector in
the same direction? (Yes! so long as �v �= �0)

Want to find c ∈ R such that
c > 0 and �c�v� = 1

=⇒ Scale by c =
1

��v�

Example �v =
�

1
0
−1

�
has length ��v� =

�
12 + (−1)2 =

√
2, so

1

��v��v =

√
2

2




1
0
−1



 =





√
2

2

0

−
√

2
2





Process above is sometimes referred to as normalizing a vector.

Remark Two inequalities regarding lengths of vectors you should see in
the text:

• Cauchy-Schwarz Inequality: |�u · �v| ≤ ��u���v�

• Triangle Inequality: ��u + �v� ≤ ��u� + ��v�
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What about the angle between two vectors? (Note: we always assume the
angle is between 0 and π.)

In R2 , we can apply Law of Cosines to the triangle

θ
�v

�u

�u− �v

and use fact that ��v�2 = �v · �v to obtain

�u · �v = ��u���v� cos θ

algebraic geometric

We generalize this to Rn.

For two nonzero vectors �u,�v ∈ Rn,

cos θ =
�u · �v
��u���v� where θ is angle between �u and �v.

What happens when θ is 90◦ or π
2?

�u and �v are
orthogonal

⇐⇒ angle between
�u and �v is 90◦

⇐⇒ �u · �v = 0

Notice that

cos θ =
�u · �v

��u���v�
always positive

leads to the following:

sign of �u · �v angle between �u and �v
+ acute
− obtuse
0 right angle
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