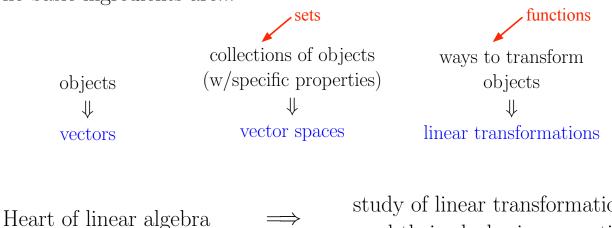
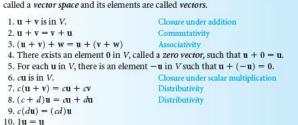
Big ideas of linear algebra

The basic ingredients are...



Definition of a vector space (page 447)

Definition Let V be a set on which two operations, called addition and scalar multiplication, have been defined. If u and v are in V, the sum of u and v is denoted by $\mathbf{u} + \mathbf{v}$, and if c is a scalar, the scalar multiple of \mathbf{u} by c is denoted by $c\mathbf{u}$. If the following axioms hold for all u, v, and w in V and for all scalars c and d, then V is called a vector space and its elements are called vectors.

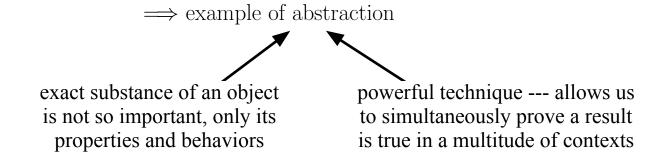


study of linear transformations and their algebraic properties

Definition of a linear transformation (page 490)

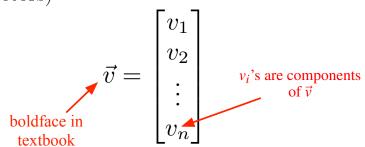
Definition A linear transformation from a vector space V to a vector space W is a mapping $T: V \to W$ such that, for all u and v in V and for all scalars c, 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ 2. $T(c\mathbf{u}) = cT(\mathbf{u})$

Remark Note that the def'n of vector space does not say exactly what vectors are, only what vectors do.



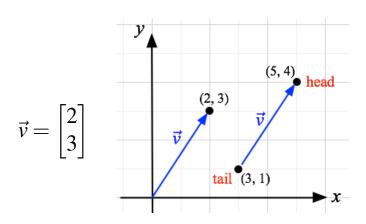
Euclidean vectors $-\mathbb{R}^n$

 $\mathbb{R}^n \implies$ the set of all ordered *n*-tuples of real numbers (expressed as column or row vectors)



Euclidean vectors have a length and a direction.

Example



vector addition

$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

scalar multiplication

$$\vec{v} = \begin{bmatrix} cv_1 \\ cv_2 \\ \vdots \\ cv_n \end{bmatrix}$$

Note: letters at end of alphabet are usually reserved for vectors, and letters at start are usually reserved for scalars.

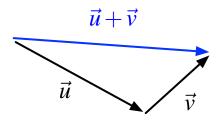
 \mathbb{R}^n with vector addition and scalar multiplication as defined above is a vector space!

Geometric interpretation in \mathbb{R}^2

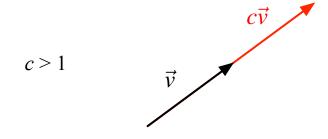
Vector addition:

Scalar multiplication:

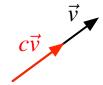
head-to-tail rule



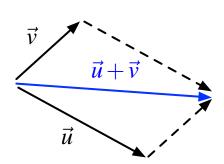
place tail of \vec{v} at head of \vec{u}



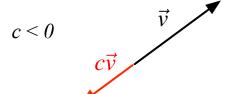
0 < c < 1



parallelogram rule



place tails of \vec{u} and \vec{v} at same point



Food for thought:

What is the other diagonal of the parallelogram in terms of \vec{u}, \vec{v} ?

Linear combinations

OMITTED

Revisiting our earlier example, note that

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

In this case, we say that $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is a *linear combination* of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Definition A *linear combination* of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ is any vector of the form

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_k\vec{v}_k,$$

where c_1, c_2, \ldots, c_k are scalars.

Can we represent $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ by other linear combinations besides the one given above?

e.g.,
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 5 \\ 6 \end{bmatrix} + (-1) \begin{bmatrix} 4 \\ 3 \end{bmatrix} + (-4) \begin{bmatrix} 1 \\ \frac{3}{2} \end{bmatrix}$$
.

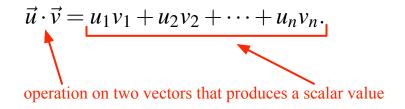
Question (to be addressed down the road):

Given vector \vec{v} and vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$, is \vec{v} a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$?

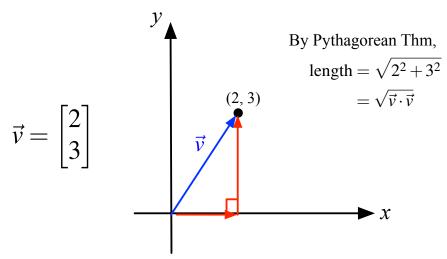
Dot product

Geometric concepts of length and orthogonality of vectors in \mathbb{R}^n can be defined algebraically using the dot product.

Definition For $\vec{u}, \vec{v} \in \mathbb{R}^n$, the <u>dot product</u> of \vec{u} and \vec{v} is



To define the length of a vector, think about what it should be for a simple vector in \mathbb{R}^2 :



Definition The *length* of \vec{v} in \mathbb{R}^n is denoted $||\vec{v}||$ and is equal to

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Remarks

• The only vector with length 0 is the zero vector $\vec{0} = \begin{bmatrix} 0 \\ \vdots \\ \vec{0} \end{bmatrix}$.

• Length of a scaled vector:

for scalar
$$c$$
, $||c\vec{v}|| = \sqrt{(c\vec{v}) \cdot (c\vec{v})} = \sqrt{c^2(\vec{v} \cdot \vec{v})} = |c| ||\vec{v}||$

• Special name for vectors of length 1: *unit vectors*

examples:
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1/2 \\ \sqrt{2}/2 \\ -1/2 \end{bmatrix}$

• Given any vector in \mathbb{R}^n , can we always scale it to get a unit vector in the same direction? (YES! so long as $\vec{v} \neq \vec{0}$)

Want to find
$$c \in \mathbb{R}$$
 such that $c > 0$ and $||c\vec{v}|| = 1$ \Longrightarrow Scale by $c = \frac{1}{||\vec{v}||}$

Example
$$\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 has length $||\vec{v}|| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$, so

$$\frac{1}{\|\vec{v}\|}\vec{v} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2}\\0\\-\frac{\sqrt{2}}{2} \end{bmatrix}$$

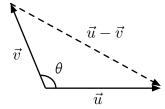
Process above is sometimes referred to as *normalizing* a vector.

Remark Two inequalities regarding lengths of vectors you should see in the text:

- Cauchy-Schwarz Inequality: $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$
- Triangle Inequality: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$

What about the angle between two vectors? (Note: we always assume the angle is between 0 and π .)

In \mathbb{R}^2 , we can apply Law of Cosines to the triangle



and use fact that $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$ to obtain

$$ec{u} \cdot ec{v} = \|ec{u}\| \|ec{v}\| \cos \theta$$
 algebraic geometric

We generalize this to \mathbb{R}^n .

For two nonzero vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$,

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$
 where θ is angle between \vec{u} and \vec{v} .

What happens when θ is 90° or $\frac{\pi}{2}$?

$$\vec{u}$$
 and \vec{v} are angle between \vec{u} and \vec{v} is 90° \iff $\vec{u} \cdot \vec{v} = 0$

Notice that

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$
 always positive