
Dot product (continued)

For two nonzero vectors ~u,~v ∈ Rn,

cos θ =
~u · ~v
‖~u‖‖~v‖ where θ is angle between ~u and ~v.

Note that we can use this identity to prove the Cauchy-Schwarz Inequality.

Theorem (Cauchy-Schwarz Inequality). For any vectors ~u,~v ∈ Rn,

|~u · ~v| ≤ ‖~u‖ ‖~v‖.

Proof. If ~u = ~0 or ~v = ~0, then clearly both sides of the inequality are 0

and the result holds.

Assume ~u,~v 6= ~0. By the previous identity,

~u · ~v = ‖~u‖ ‖~v‖ cos θ (?).

Thus,

|~u · ~v| = | ‖~u‖ ‖~v‖ cos θ | by (?) above

= ‖~u‖ ‖~v‖ | cos θ| since ‖~u‖, ‖~v‖ ≥ 0

≤ ‖~u‖ ‖~v‖ since −1 ≤ cos θ ≤ 1 implies | cos θ| ≤ 1.

�
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Projections

Let’s look at yet another use of the dot product.

Sometimes we want to be able to determine the projection of a vector ~v (or

~w) onto another vector ~u.
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Note that we are, in fact, decomposing vector ~v into two orthogonal parts:

~v = proj~u(~v) + (~v − proj~u(~v)).

�v

�u proj�u(�v)

�v − proj�u(�v)

Definition If ~u,~v ∈ Rn and ~u 6= ~0, then the projection of ~v onto ~u is

the vector proj~u(~v) given by

proj~u(~v) =

(
~u · ~v
~u · ~u

)
~u.

Let’s verify that, given the definition above, proj~u(~v) and ~v − proj~u(~v) are

orthogonal.
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We have

proj~u(~v) · [~v − proj~u(~v)] =

[(
~u · ~v
~u · ~u

)
~u

]
·
[
~v −

(
~u · ~v
~u · ~u

)
~u

]

=

(
~u · ~v
~u · ~u

)
(~u · ~v) −

(
~u · ~v
~u · ~u

)2

(~u · ~u)

=
(~u · ~v)2

~u · ~u − (~u · ~v)2

~u · ~u
= 0.

Lines and planes

Armed with our knowledge of vectors, let us look at two familiar geometric

objects: lines and planes.

Example Consider the line ` given by 2x− 3y = −6.

Consider the vector ~n =

[
2

−3

]
.

Note that this vector is orthogonal to any

vector that is parallel to line `.

Pick a point on `, say (0, 2), and let (x, y)

be an arbitrary point on `.

Then [
x− 0

y − 2

]
=

[
x

y − 2

]
is a vector along line `.
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Thus, for any point (x, y) on line `, we have that[
2

−3

]
︸ ︷︷ ︸
normal
vector

·
[

x

y − 2

]
= 0.

So, in general, if ~n 6= ~0 is a normal vector to a line ` in R2

containing point (p1, p2), then the line has normal form

~n ·
[
x− p1

y − p2

]
= 0 or ~n ·

[
x

y

]
= ~n ·

[
p1

p2

]
.

However, this is not the only way to describe a line using vectors.

Example Consider the line from our previous example.

Imagine a particle moving along the

line. Suppose at time t = 0 the par-

ticle is at point (-3, 0).

Also, assume the particle moves along

the line such that the x-coordinate

changes +1 unit per second.

So,

time t = 1⇒ particle at
(−2, 2

3

)
time t = 2⇒ particle at

(−1, 4
3

)
,

and more generally, if t seconds have

passed, the particle moves t units in

the x-direction and 2
3t units in the y-

direction.

y
2x− 3y = −6

t = 0
t = 1

t = 2

t = 3
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Then for any point (x, y) on the line, we have that[
x

y

]
=

[
0

−3

]
+

[
t
2
3t

]
=

[
0

−3

]
+ t

[
1
2
3

]
︸︷︷︸

direction
vector

.

Is the choice of the direction vector unique?

A line in R2 has vector form[
x

y

]
=

[
p1

p2

]
+ t

[
d1

d2

]

where (p1, p2) is a point on the line, ~d =

[
d1

d2

]
is a nonzero direc-

tion vector, and t is a real number. The componentwise equations,

given below, are called parametric equations of the line:

x = p1 + td1

y = p2 + td2.

Note that we can easily generalize the vector form of a line from R2 to R3.

A line in R2 or R3 has vector form

~x = ~p + t~d

where ~p is a point on the line, ~d 6= ~0 is a direction vector, and t is a

real number. The componentwise equations are called parametric

equations of the line.
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What about describing planes in R3 using vectors?

Consider a plane in R3.

Pick a point (p1, p2, p3) in the plane, and

let (x, y, z) be an arbitrary point in the

plane. Then x− p1

y − p2

z − p3


is a vector in the plane for all points

(x, y, z) in the plane.

Using a normal vector ~n to the plane,

the points in the plane are precisely those

such that ~x− ~p is orthogonal to ~n.

(x, y, z)
(p1, p2, p3)

x− p1

y − p2

z − p3

 = �x− �p

Thus, if ~n 6= ~0 is a normal vector to a plane in R3 containing

point (p1, p2, p3), then the line has normal form

~n · (~x− ~p) = 0 or ~n · ~x = ~n · ~p.

We can also describe a plane in R3 with a vector form.

Key difference =⇒ starting from a point in the plane, we need the

particle to move along two, non-parallel direction vectors rather than along

only one direction vector.
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A plane in R3 has vector form

~x = ~p + s~u + t~v

where ~p is a point in the plane, ~u and ~v are direction vectors

(nonzero and non-parallel), and s and t are real numbers. The

componentwise equations are called parametric equations of the

plane.

Important observation

In regards to the vector or parametric forms of equations,

for a line (one-dimensional), we needed one parameter (t),

and for a plane (two-dimensional), we needed two parameters (s and t).

We will talk more about dimension down the road.

Lecture 2 Math 40, Spring ’12, Prof. Kindred Page 7


