Dot product (continued)

For two nonzero vectors i, v € R",

X5
7]

]

cosf = where 6 is angle between @ and .

=

Note that we can use this identity to prove the Cauchy-Schwarz Inequality.

Theorem (Cauchy-Schwarz Inequality). For any vectors w,v € R”,

[a - o] < [lal} [|7]].

Proof. If @ = 0 or @ = 0, then clearly both sides of the inequality are 0
and the result holds.
Assume @, ¥ # 0. By the previous identity,
u-v = ||| ||v]] cos b ().
Thus,
@3 = | 1@ |7 cos| by (x) above
= [l [[v]] [ cos @] since ||ul], [|7]] = 0

< ||@|| [|7]]  since —1 < cosf < 1 implies |cosf| < 1.
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Projections

Let’s look at yet another use of the dot product.

Sometimes we want to be able to determine the projection of a vector ¢/ (or

w) onto another vector .

g1

]

- Pfojﬁ(w)

Note that we are, in fact, decomposing vector v’ into two orthogonal parts:

v = projg(v) + (U — proju(v)).

Definition If @,7 € R" and @ # 0, then the

—

the vector projz(¥) given by

L Uu-vY\
pI'OJg(U): i i u.

of ¥ onto wu is

Let’s verify that, given the definition above, proj(¥/) and ¢ — proj;(¥/) are

orthogonal.
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We have

proj(v) - [ — proj(v)] =

Lines and planes

Armed with our knowledge of vectors, let us look at two familiar geometric
objects: lines and planes.

Example Consider the line ¢ given by 2x — 3y = —6.

Consider the vector 77 = [_23] .

Note that this vector is orthogonal to any
vector that is parallel to line £.

Pick a point on £, say (0,2), and let (x, y)

be an arbitrary point on £.

Then 1

i

is a vector along line /.
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Thus, for any point (z,y) on line ¢, we have that

L?El.[nyI_o.

So, in general, if 17 # 0 is a normal vector to a line £ in R2
containing point (p1, p2), then the line has

ﬁ.[x—m]_o or H_[p]
Yy —Dp2 Y P2

However, this is not the only way to describe a line using vectors.

Example Consider the line from our previous example.

Imagine a particle moving along the
line. Suppose at time ¢ = 0 the par-
ticle is at point (-3, 0).

Also, assume the particle moves along
the line such that the x-coordinate
changes +1 unit per second.

S0, >
time t = 1 = particle at (—2, %)
time ¢ = 2 = particle at (—1, %), +

and more generally, if ¢ seconds have 1

passed, the particle moves ¢ units in v
the x-direction and %t units in the y-
direction.
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Then for any point (z,y) on the line, we have that
x| |0 N tl |10 4y 1
yl |3 it -3 5
<~

Is the choice of the direction vector unique?

. . . > |d
where (p1, p2) is a point on the line, d = [ dl
2

tion vector, and ¢ is a real number. The componentwise equations,

] Is a nonzero direc-

given below, are called of the line:

x=p1+td1
Yy = po + tds.

Note that we can easily generalize the vector form of a line from R? to R?.

A line in R? or R3 has
T=p+td

where p'is a point on the line, d £ ( is a direction vector, and ¢ is a
real number. The componentwise equations are called
of the line.
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What about describing planes in R? using vectors?

Consider a plane in R?.

Pick a point (p1, p2, p3) in the plane, and
let (z,y, z) be an arbitrary point in the
plane. Then

—

r — Pp1

?7) T
Y — D2 k‘@ )
Z — D3 (p1,p2,ps3) '; ."%

is a vector in the plane for all points ;"

r—m
Yy—p2| =2 —p

Z—P3

(x,y, z) in the plane.
Using a normal vector 7 to the plane, [

the points in the plane are precisely those
such that ¥ — p'is orthogonal to 7.

Thus, if 7 # 0 is a normal vector to a plane in R? containing
point (p1, p2, p3), then the line has

—

n-(X—p)=0 or N-¥=1-p.

We can also describe a plane in R? with a vector form.

Key difference = starting from a point in the plane, we need the
particle to move along two, non-parallel direction vectors rather than along
only one direction vector.
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A plane in R? has
g

where p is a point in the plane, @ and ¢ are direction vectors
(nonzero and non-parallel), and s and ¢ are real numbers. The
componentwise equations are called of the
plane.

Important observation
In regards to the vector or parametric forms of equations,

for a line (one-dimensional), we needed one parameter (),

and for a plane (two-dimensional), we needed two parameters (s and t).

We will talk more about dimension down the road.
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