Dot product (continued)

For two nonzero vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$,

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$
 where θ is angle between \vec{u} and \vec{v} .

Note that we can use this identity to prove the Cauchy-Schwarz Inequality.

Theorem (Cauchy-Schwarz Inequality). For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$,

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||.$$

Proof. If $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$, then clearly both sides of the inequality are 0 and the result holds.

Assume $\vec{u}, \vec{v} \neq \vec{0}$. By the previous identity,

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta \qquad (\star).$$

Thus,

$$\begin{split} |\vec{u} \cdot \vec{v}| &= | \ \|\vec{u}\| \ \|\vec{v}\| \cos \theta \ | \quad \text{by } (\star) \text{ above} \\ &= \|\vec{u}\| \ \|\vec{v}\| \ |\cos \theta| \quad \text{since } \|\vec{u}\|, \|\vec{v}\| \geq 0 \\ &\leq \|\vec{u}\| \ \|\vec{v}\| \quad \text{since } -1 \leq \cos \theta \leq 1 \text{ implies } |\cos \theta| \leq 1. \end{split}$$

Projections

Let's look at yet another use of the dot product.

Sometimes we want to be able to determine the projection of a vector \vec{v} (or \vec{w}) onto another vector \vec{u} .

Note that we are, in fact, decomposing vector \vec{v} into two orthogonal parts:

$$\vec{v} = \operatorname{proj}_{\vec{v}}(\vec{v}) + (\vec{v} - \operatorname{proj}_{\vec{v}}(\vec{v})).$$

Definition If $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $\vec{u} \neq \vec{0}$, then the *projection* of \vec{v} onto \vec{u} is the vector $\text{proj}_{\vec{u}}(\vec{v})$ given by

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u}.$$

Let's verify that, given the definition above, $\operatorname{proj}_{\vec{u}}(\vec{v})$ and $\vec{v} - \operatorname{proj}_{\vec{u}}(\vec{v})$ are orthogonal.

We have

$$\operatorname{proj}_{\vec{u}}(\vec{v}) \cdot [\vec{v} - \operatorname{proj}_{\vec{u}}(\vec{v})] = \left[\left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \right) \vec{u} \right] \cdot \left[\vec{v} - \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \right) \vec{u} \right]$$

$$= \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \right) (\vec{u} \cdot \vec{v}) - \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \right)^2 (\vec{u} \cdot \vec{u})$$

$$= \frac{(\vec{u} \cdot \vec{v})^2}{\vec{u} \cdot \vec{u}} - \frac{(\vec{u} \cdot \vec{v})^2}{\vec{u} \cdot \vec{u}}$$

$$= 0.$$

Lines and planes

Armed with our knowledge of vectors, let us look at two familiar geometric objects: lines and planes.

Example Consider the line ℓ given by 2x - 3y = -6.

Consider the vector $\vec{n} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Note that this vector is orthogonal to any vector that is parallel to line ℓ .

Pick a point on ℓ , say (0,2), and let (x,y) be an arbitrary point on ℓ .

Then

$$\begin{bmatrix} x - 0 \\ y - 2 \end{bmatrix} = \begin{bmatrix} x \\ y - 2 \end{bmatrix}$$

is a vector along line ℓ .

Thus, for any point (x, y) on line ℓ , we have that

$$\underbrace{\begin{bmatrix} 2 \\ -3 \end{bmatrix}}_{\substack{normal \\ vector}} \cdot \begin{bmatrix} x \\ y - 2 \end{bmatrix} = 0.$$

So, in general, if $\vec{n} \neq \vec{0}$ is a normal vector to a line ℓ in \mathbb{R}^2 containing point (p_1, p_2) , then the line has *normal form*

$$\vec{n} \cdot \begin{bmatrix} x - p_1 \\ y - p_2 \end{bmatrix} = 0 \quad \text{or} \quad \vec{n} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \vec{n} \cdot \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}.$$

However, this is not the only way to describe a line using vectors.

Example Consider the line from our previous example.

Imagine a particle moving along the line. Suppose at time t = 0 the particle is at point (-3, 0).

Also, assume the particle moves along the line such that the x-coordinate changes +1 unit per second.

So,

time
$$t = 1 \Rightarrow$$
 particle at $\left(-2, \frac{2}{3}\right)$
time $t = 2 \Rightarrow$ particle at $\left(-1, \frac{4}{3}\right)$,

and more generally, if t seconds have passed, the particle moves t units in the x-direction and $\frac{2}{3}t$ units in the y-direction.

Then for any point (x, y) on the line, we have that

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \end{bmatrix} + \begin{bmatrix} t \\ \frac{2}{3}t \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \end{bmatrix} + t \underbrace{\begin{bmatrix} 1 \\ \frac{2}{3} \end{bmatrix}}_{\substack{direction \\ pector}}$$

Is the choice of the direction vector unique?

A line in \mathbb{R}^2 has vector form

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + t \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

where (p_1, p_2) is a point on the line, $\vec{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$ is a nonzero direction vector, and t is a real number. The componentwise equations, given below, are called *parametric equations* of the line:

$$x = p_1 + td_1$$
$$y = p_2 + td_2.$$

Note that we can easily generalize the vector form of a line from \mathbb{R}^2 to \mathbb{R}^3 .

A line in \mathbb{R}^2 or \mathbb{R}^3 has vector form

$$\vec{x} = \vec{p} + t\vec{d}$$

where \vec{p} is a point on the line, $\vec{d} \neq \vec{0}$ is a direction vector, and t is a real number. The componentwise equations are called *parametric* equations of the line.

What about describing planes in \mathbb{R}^3 using vectors?

Consider a plane in \mathbb{R}^3 .

Pick a point (p_1, p_2, p_3) in the plane, and let (x, y, z) be an arbitrary point in the plane. Then

$$\begin{bmatrix} x - p_1 \\ y - p_2 \\ z - p_3 \end{bmatrix}$$

is a vector in the plane for all points (x, y, z) in the plane.

Using a normal vector \vec{n} to the plane, the points in the plane are precisely those such that $\vec{x} - \vec{p}$ is orthogonal to \vec{n} .

Thus, if $\vec{n} \neq \vec{0}$ is a normal vector to a plane in \mathbb{R}^3 containing point (p_1, p_2, p_3) , then the line has *normal form*

$$\vec{n} \cdot (\vec{x} - \vec{p}) = 0$$
 or $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$.

We can also describe a plane in \mathbb{R}^3 with a vector form.

Key difference \implies starting from a point in the plane, we need the particle to move along two, non-parallel direction vectors rather than along only one direction vector.

A plane in \mathbb{R}^3 has vector form

$$\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$$

where \vec{p} is a point in the plane, \vec{u} and \vec{v} are direction vectors (nonzero and non-parallel), and s and t are real numbers. The componentwise equations are called *parametric equations* of the plane.

Important observation

In regards to the vector or parametric forms of equations,

for a line (one-dimensional), we needed one parameter (t), and for a plane (two-dimensional), we needed two parameters (s and t).

We will talk more about dimension down the road.