Homogeneous systems and rank

Math 40, Introduction to Linear Algebra January 2012

Special case: homogeneous system

Homogeneous system

0 constants in all equations are zero

- Any homogeneous system is consistent since $\vec{x} = \vec{0}$ is always a solution.
- If homogeneous system has m equations and n variables with m < n, then system has infinite # of solutions.

Do we need an augmented matrix when performing Gauss-Jordan elimination on a homogeneous system?

Rank of a matrix

rank of a matrix = # of nonzero rows in its RREF (or REF)

- can think of rank as the # of "independent" rows of the matrix
- rank of the matrix associated with a linear system is the # of nonredundant equations in the system
- equivalently, the rank is the # of leading ones in the RREF of the matrix

$$\begin{array}{c} x+y+z-w=0 \\ 2x+2y+z-3w=0 \\ -x-y+z+3w=0 \end{array} \quad \begin{bmatrix} 1 & 1 & 1 & -1 \\ 2 & 2 & 1 & -3 \\ -1 & -1 & 1 & 3 \end{bmatrix} \xrightarrow{\mathsf{EROS}} \begin{bmatrix} 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 eqn 3 = 3(eqn 1) - 2(eqn 2)

Rank of a matrix

rank of a matrix = # of nonzero rows in its RREF (or REF)

- can think of rank as the # of "independent" rows of the matrix
- rank of the matrix associated with a linear system is the # of nonredundant equations in the system
- equivalently, the rank is the # of leading ones in the RREF of the matrix

Theorem: Let *A* be the coefficient matrix of a linear system with *n* variables. If the system is consistent, then

of free variables = n - rank(A).

Spanning sets and linear independence

Introduction

We begin with the notion of a linear combination.

Definition A *linear combination* of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ is any vector of the form

$$c_1\vec{v}_1+c_2\vec{v}_2+\cdots c_k\vec{v}_k,$$

where c_1, c_2, \ldots, c_k are scalars.

Example Consider

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

In this case, we say that $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Can we represent $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ by other linear combinations besides the one given above?

YES
$$\Longrightarrow$$
 e.g., $\begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 5 \\ 6 \end{bmatrix} + (-1) \begin{bmatrix} 4 \\ 3 \end{bmatrix} + (-4) \begin{bmatrix} 1 \\ \frac{3}{2} \end{bmatrix}$.

Motivating example

Can we express any vector in \mathbb{R}^2 as a linear combination of

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$? fundamental building blocks of \mathbb{R}^2 "basis" of \mathbb{R}^2

YES! Any $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ can be expressed as

$$\vec{x} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

What about $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as fundamental building blocks of \mathbb{R}^2 ?

Two important qualities of $S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$:

- enough vectors in S to express every vector in \mathbb{R}^2 as a linear combination of those in S
- no vectors in S are redundant, i.e., vectors in S are "independent" $\begin{cases} linear \\ independence \end{cases}$

Span

Example Is $\begin{bmatrix} -3 \\ 8 \\ -5 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$?

In other words, are there scalars c_1, c_2 such that

$$c_1 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 8 \\ -5 \end{bmatrix}?$$

This is a linear system! (two unknowns $\Rightarrow c_1, c_2$)

$$\begin{bmatrix} 1 & 3 & | & -3 \\ 2 & -1 & | & 8 \\ -1 & 1 & | & -5 \end{bmatrix} \xrightarrow{\text{EROs}} \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -2 \\ 0 & 0 & | & 0 \end{bmatrix}$$

augmented matrix

Thus, the solution is $c_1 = 3$, $c_2 = -2$, which implies that

$$\begin{bmatrix} -3 \\ 8 \\ -5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$$

YES, it is a linear combination.

We say that
$$\begin{bmatrix} -3\\8\\-5 \end{bmatrix}$$
 is in the *span* of $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$ and $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$.

Definition The *span* of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \in \mathbb{R}^n$ is

$$\operatorname{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k) = \text{set of all linear combinations of } \vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$$
$$= \{c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k : c_1, \dots, c_k \in \mathbb{R}\}.$$

Remarks

- span $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k)$ is a **set of vectors** (the set of all vectors that can be built from $\vec{v}_1, \dots, \vec{v}_k$)
- If $S = {\vec{v}_1, \dots, \vec{v}_k}$, then span $(S) = \text{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k)$.
- If span(S) = \mathbb{R}^n , i.e., every vector in \mathbb{R}^n is a linear combination of the vectors in S, then we say S is a *spanning set* of \mathbb{R}^n .

Example Is
$$\left\{ \begin{bmatrix} -1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 4\\7\\3 \end{bmatrix} \right\}$$
 a spanning set of \mathbb{R}^3 ?

Equivalently, for any $\vec{b} \in \mathbb{R}^3$, can \vec{b} be expressed as a linear combination of the three given vectors, i.e, do there exist scalars c_1, c_2, c_3 such that

$$c_1 \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + c_3 \begin{bmatrix} 4 \\ 7 \\ 3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}?$$

Is
$$\begin{bmatrix} -1 & 2 & 4 & b_1 \\ 2 & 1 & 7 & b_2 \\ 3 & -1 & 3 & b_3 \end{bmatrix}$$
 consistent for all choices of $b_1, b_2, b_3 \in \mathbb{R}$?

$$\begin{bmatrix} -1 & 2 & 4 & b_1 \\ 2 & 1 & 7 & b_2 \\ 3 & -1 & 3 & b_3 \end{bmatrix} \xrightarrow{\text{EROs}} \begin{bmatrix} 1 & -2 & -4 & -b_1 \\ 0 & 5 & 15 & b_2 + 2b_1 \\ 0 & 0 & 0 & b_3 + b_1 - b_2 \end{bmatrix}$$

Because $b_3 + b_1 - b_2 \neq 0$ for all $b_1, b_2, b_3 \in \mathbb{R}$, the given set of vectors is NOT a spanning set of \mathbb{R}^3 .

Linear independence

Example Recall we previously found that

$$\begin{bmatrix} -3 \\ 8 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}.$$

Rearranging terms, we have

$$3\underbrace{\begin{bmatrix}1\\2\\-1\end{bmatrix}}_{\vec{v}_1} - 2\underbrace{\begin{bmatrix}3\\-1\\1\end{bmatrix}}_{\vec{v}_2} - \underbrace{\begin{bmatrix}-3\\8\\5\end{bmatrix}}_{\vec{v}_3} = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$

Thus, we have a nontrivial way to express $\vec{0}$ as a linear combination of v_1, v_2, v_3 . This is the definition of *linear dependence*.

Definition We say vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are *linearly dependent* if \exists scalars c_1, c_2, \dots, c_k , not all zero, such that

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k = \vec{0}.$$
 (*)

Otherwise, the vectors are *linearly independent*, which means the only solution to (\star) is the trivial solution $c_1 = \cdots = c_k = 0$.