
Spanning sets and linear independence

Span (continued)

Summary Given �v1, . . . ,�vk,�b ∈ Rn,

�b ∈ span(�v1, . . . ,�vk)⇐⇒
�b is a linear comb.

of �v1, . . . ,�vk

⇐⇒

[ A | �b ] has a
solution, where A is
matrix w/columns

as �v1, . . . ,�vk

Given �v1, . . . ,�vk ∈ Rn,

S = {�v1, . . . ,�vk} is
a spanning set of Rn ⇐⇒ span(S) = Rn ⇐⇒

[ A | �b ]
has a solution
for any �b ∈ Rn

Linear independence

Example Recall we previously found that
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�
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�
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�
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1

�
.

Rearranging terms, we have
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� �� �
�v1
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�

� �� �
�v2

−
� −3

8

−5

�

� �� �
�v3

=

�
0

0

0

�
.

Thus, we have a nontrivial way to express �0 as a linear combination of
�v1,�v2,�v3. This is the definition of linear dependence.
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Definition We say vectors �v1,�v2, . . . ,�vk are linearly dependent if ∃
scalars c1, c2, . . . , ck, not all zero, such that

c1�v1 + c2�v2 + · · · + ck�vk = �0. (�)

Otherwise, the vectors are linearly independent, which means the only
solution to (�) is the trivial solution c1 = · · · = ck = 0.

To determine if �v1,�v2, . . . ,�vk are linearly independent or not, we need to
know if ∃ nontrivial solution to

c1�v1 + c2�v2 + · · · + ck�vk = �0 =⇒




| | | 0
�v1 �v2 · · · �vk

...
| | | 0





� �� �
augmented matrix

This is a homogeneous linear system! We need to determine if the system
has one solution or more than one solution.

�v1, . . . ,�vk are linearly
independent

⇐⇒ [ A | �0 ] has a unique solution, namely �0
(where A has �v1, . . . ,�vk as columns)

Example Are the following vectors linearly independent?
�

0

1

5

�
,

�
1

2

8

�
,

�
4

−1

0

�

We do EROs on the appropriate augmented matrix to get



0 1 4 0
1 2 −1 0
5 8 0 0



 EROs−−−→




1 2 −1 0
0 1 4 0
0 0 13 0



 .
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We see that there are no free variables (i.e., every column has a leading
entry), so the system has a unique solution, �0. Thus, the vectors are

linearly independent.

Theorem.

Vectors �v1, . . . ,�vk are
linearly dependent

if and only if
one of the vectors can be

written as a linear
combination of the others.

Facts Let S = {�v1,�v2, . . . ,�vk} be a set of vectors in Rn.

(1) If �vi = �0 for some i, then S is linearly dependent.

(2) If one vector in S is a linear combination of the other vectors in S,
then S is linearly dependent.

(3) If k > n (more vectors than components), then S is linearly dependent.

Homogeneous system w/more variables than equations must have a
free variable.

Example Is

��
1

2

3

�
,

� −2

0

1

�
,

� −10

21

−5

�
,

�
0

−1
7

7

��
linearly independent?

No! The vectors are linearly dependent since we have 4 vectors in R3. (See
fact 3 above.)
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Matrices

At its core, linear algebra is the study of linear transformations and their
algebraic properties. We’ll see, down the road, that there is an intimate
relationship between a linear transformation and a matrix.

Recall...

Definition A matrix is a rectangular array of numbers.

Example A =




1 2
−3

2 3
0 −5



 is a 3× 2 matrix.

aij denotes the entry of A in row i and column j, so, for example, a12 = 2
and a21 = −3

2.

Definition If A is an n × n matrix (i.e., # of rows = # of cols.), then
we say that A is a square matrix.

Matrix operations

• Equality:

A = B ⇐⇒ A, B are same size and aij = bij ∀ i, j

• Matrix addition: A, B are m× n matrices

C = A + B is the m× n matrix defined as cij = aij + bij ∀ i, j

add entrywise

• Scalar multiplication: m× n matrix A, scalar c

cA is the m× n matrix with entries caij ∀ i, j
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Example

2

�
2 5

2 1
−1 0 2

�
+

�
3 1 −4
1 5 2

�
=

�
7 6 −2
−1 5 6

�

Remark The set of all m×n matrices with real entries (denoted Rm×n or
Mm×n(R)) with the operations of matrix addition and scalar multiplication
form a vector space.

A, B, C are m× n matrices, c, d are scalars

(1) A + B is an m× n matrix (closure under addition)
(2) A + B = B + A (commutativity)
(3) (A + B) + C = A + (B + C) (associativity)
(4) A + 0 = A (existence of additive identity)
(5) A + (−A) = 0 (existence of additive inverses)
(6) cA is an m× n matrix (closure under scalar multiplication)
(7) c(A + B) = cA + cB (distributivity)
(8) (c + d)A = cA + dA (distributivity)
(9) c(dA) = (cd)A

(10) 1A = A

Matrix multiplication =⇒ see slides
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Matrix multiplication

Math 40, Introduction to Linear Algebra
Monday, January 30, 2012

Matrix-vector multiplication:  two views

�
1 −2 3
2 1 5

� 


4
3
2



 = 4
�

1
2

�

A

• 1st perspective:  A   is linear combination of columns of A�x

�x



Matrix-vector multiplication:  two views

�
1 −2 3
2 1 5

� 


4
3
2



 = 4
�

1
2

�
+ 3

�
−2
1

�
+ 2

�
3
5

�
=

�
4

21

�

�
1 −2 3
2 1 5

� 


4
3
2



 =





dot product of

�
1
−2
3

�
and

�
4
3
2

�



A

• 1st perspective:  A   is linear combination of columns of A�x

�x

• 2nd perspective:  A   is computed as dot product of rows of A with vector�x �x

A
�x

Matrix-vector multiplication:  two views
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3
2


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
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4

dot product of

�
2
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5

�
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�
4
3
2

�



 =
�

4
21

�

A

• 1st perspective:  A   is linear combination of columns of A�x

�x

• 2nd perspective:  A   is computed as dot product of rows of A with vector�x �x

Notice that # of columns of A = # of rows of    .
This is a requirement in order for matrix multiplication to be defined.

�x

A
�x



Matrix multiplication (in general)

�
1 −2 3
2 1 5

� 


4 2 1
3 0 2
2 1 3





A                 B

Note that
  # cols. of A = # of rows of B

AB = 



 A





m x n





| | |
| | |

�b1 �b2 · · · �bp
| | |
| | |





n x p

=




| | |

A�b1 A�b2 · · · A�bp
| | |





m x p

Each column of AB is a linear combination of columns of A. 

Matrix multiplication (in general)

�
1 −2 3
2 1 5

� 


4 2 1
3 0 2
2 1 3





A                 B

Note that
  # cols. of A = # of rows of B

Computing AB via linear combinations of columns of A:

While you 
should understand 

this approach, it is often 
easier to multiply 
matrices via dot 

products.

=
�

4 5 6
21 9 19

�

1st column of AB = 4
�

1
2

�
+ 3

�
−2
1

�
+ 2

�
3
5

�
=

�
4

21

�

2nd column of AB = 2
�

1
2

�
+ 0

�
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1

�
+ 1

�
3
5

�
=

�
5
9

�

3rd column of AB = 1
�

1
2

�
+ 2

�
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1

�
+ 3

�
3
5

�
=

�
6

19

�






1
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3



 ·
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3
2



 = 4

Matrix multiplication (in general)

A
                   B

since

�
1 −2 3
2 1 5

� 


4 2 1
3 0 2
2 1 3



 =
�

4
�

In terms of dot products, 

viewed as column vectors

the (i, j)-entry
of AB = [ith row of A] · [jth column of B]

Matrix multiplication (in general)

A
                   B

since

�
1 −2 3
2 1 5

� 


4 2 1
3 0 2
2 1 3



 =
�

4 5 6
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�
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

 = 19

In terms of dot products, 

viewed as column vectors

the (i, j)-entry
of AB = [ith row of A] · [jth column of B]



“inner” 
parameters 
must match

m x n   n x p

Matrix multiplication 

For m x n matrix A and n x p matrix B, the matrix product AB 
is an m x p matrix.

“outer” parameters become 
parameters of matrix AB

What sizes of matrices can be multiplied together? 

If A is a square matrix and k is a positive integer, we define
Ak = A · A · · · A� �� �

k factors


