Spanning sets and linear independence

Span (continued)

Linear independence

Example Recall we previously found that

$$\begin{bmatrix} -3 \\ 8 \\ -5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}.$$

Rearranging terms, we have

$$3\underbrace{\begin{bmatrix}1\\2\\-1\end{bmatrix}}_{\vec{v}_1} - 2\underbrace{\begin{bmatrix}3\\-1\\1\end{bmatrix}}_{\vec{v}_2} - \underbrace{\begin{bmatrix}-3\\8\\-5\end{bmatrix}}_{\vec{v}_3} = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$

Thus, we have a nontrivial way to express $\vec{0}$ as a linear combination of $\vec{v}_1, \vec{v}_2, \vec{v}_3$. This is the definition of *linear dependence*.

Definition We say vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are *linearly dependent* if \exists scalars c_1, c_2, \dots, c_k , not all zero, such that

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k = \vec{0}.$$
 (*)

Otherwise, the vectors are *linearly independent*, which means the only solution to (\star) is the trivial solution $c_1 = \cdots = c_k = 0$.

To determine if $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are linearly independent or not, we need to know if \exists nontrivial solution to

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k = \vec{0} \implies \underbrace{\begin{bmatrix} | & | & | & 0 \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_k & | \vdots \\ | & | & & | & 0 \end{bmatrix}}_{\text{augmented matrix}}$$

This is a homogeneous linear system! We need to determine if the system has one solution or more than one solution.

$$\vec{v}_1, \dots, \vec{v}_k$$
 are linearly independent $\iff \begin{bmatrix} A \mid \vec{0} \end{bmatrix}$ has a unique solution, namely $\vec{0}$ (where A has $\vec{v}_1, \dots, \vec{v}_k$ as columns)

Example Are the following vectors linearly independent?

$$\begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 8 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$$

We do EROs on the appropriate augmented matrix to get

$$\begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \end{bmatrix} \xrightarrow{\text{EROs}} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \end{bmatrix}.$$

We see that there are no free variables (i.e., every column has a leading entry), so the system has a unique solution, $\vec{0}$. Thus, the vectors are linearly independent.

Theorem.

Vectors
$$\vec{v}_1, \dots, \vec{v}_k$$
 are linearly dependent if and only if one of the vectors can be written as a linear combination of the others.

Facts Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be a set of vectors in \mathbb{R}^n .

- (1) If $\vec{v}_i = \vec{0}$ for some i, then S is linearly dependent.
- (2) If one vector in S is a linear combination of the other vectors in S, then S is linearly dependent.
- (3) If k > n (more vectors than components), then S is linearly dependent. Homogeneous system w/more variables than equations must have a free variable.

Example Is
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix}, \begin{bmatrix} -10\\21\\-5 \end{bmatrix}, \begin{bmatrix} 0\\-\frac{1}{7}\\7 \end{bmatrix} \right\}$$
 linearly independent?

No! The vectors are linearly dependent since we have 4 vectors in \mathbb{R}^3 . (See fact 3 above.)

Matrices

At its core, linear algebra is the study of linear transformations and their algebraic properties. We'll see, down the road, that there is an intimate relationship between a linear transformation and a matrix.

Recall...

Definition A *matrix* is a rectangular array of numbers.

Example
$$A = \begin{bmatrix} 1 & 2 \\ -\frac{3}{2} & 3 \\ 0 & -5 \end{bmatrix}$$
 is a 3×2 matrix.

 a_{ij} denotes the entry of A in row i and column j, so, for example, $a_{12} = 2$ and $a_{21} = -\frac{3}{2}$.

Definition If A is an $n \times n$ matrix (i.e., # of rows = # of cols.), then we say that A is a *square matrix*.

Matrix operations

• Equality:

$$A = B \iff A, B \text{ are same size and } a_{ij} = b_{ij} \ \forall \ i, j$$

• Matrix addition: $A, B \text{ are } m \times n \text{ matrices}$

$$C = A + B$$
 is the $m \times n$ matrix defined as $c_{ij} = a_{ij} + b_{ij} \ \forall \ i, j$
add entrywise

• Scalar multiplication: $m \times n$ matrix A, scalar c

cA is the $m \times n$ matrix with entries $ca_{ij} \ \forall \ i, j$

Example

$$2\begin{bmatrix} 2 & \frac{5}{2} & 1 \\ -1 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & -4 \\ 1 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 & -2 \\ -1 & 5 & 6 \end{bmatrix}$$

Remark The set of all $m \times n$ matrices with real entries (denoted $\mathbb{R}^{m \times n}$ or $M_{m \times n}(\mathbb{R})$) with the operations of matrix addition and scalar multiplication form a vector space.

A, B, C are $m \times n$ matrices, c, d are scalars

(1)
$$A + B$$
 is an $m \times n$ matrix (closure under addition)

(2)
$$A + B = B + A$$
 (commutativity)

(3)
$$(A+B)+C=A+(B+C)$$
 (associativity)

(4)
$$A + 0 = A$$
 (existence of additive identity)

(5)
$$A + (-A) = 0$$
 (existence of additive inverses)

(6)
$$cA$$
 is an $m \times n$ matrix (closure under scalar multiplication)

(7)
$$c(A+B) = cA + cB$$
 (distributivity)

(8)
$$(c+d)A = cA + dA$$
 (distributivity)

$$(9) \quad c(dA) = (cd)A$$

$$(10) 1A = A$$

Matrix multiplication \Longrightarrow see slides

Matrix multiplication

Math 40, Introduction to Linear Algebra Monday, January 30, 2012

Matrix-vector multiplication: two views

• 1st perspective: $A\vec{x}$ is linear combination of columns of A

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{x}$$

Matrix-vector multiplication: two views

• 1st perspective: $A\vec{x}$ is linear combination of columns of A

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 21 \end{bmatrix}$$

• 2nd perspective: $A\vec{x}$ is computed as dot product of rows of A with vector \vec{x}

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \text{dot product of } \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \end{bmatrix}$$

Matrix-vector multiplication: two views

• 1st perspective: $A\vec{x}$ is linear combination of columns of A

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 21 \end{bmatrix}$$

$$\vec{x}$$

• 2nd perspective: $A\vec{x}$ is computed as dot product of rows of A with vector \vec{x}

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ \text{dot product of } \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} \text{ and } \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 4 \\ 21 \end{bmatrix}$$

Notice that # of columns of A = # of rows of \vec{x} .

This is a requirement in order for matrix multiplication to be defined.

Matrix multiplication (in general)

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$
Note that
$$\# \text{ cols. of A} = \# \text{ of rows of B}$$

$$B$$

$$AB = \begin{bmatrix} A \\ \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_p \\ \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_p \end{bmatrix} = \begin{bmatrix} \vec{A}\vec{b}_1 & \vec{A}\vec{b}_2 & \cdots & \vec{A}\vec{b}_p \\ \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_p \end{bmatrix}$$

$$m \times n$$

$$n \times p$$

$$m \times p$$

Each column of AB is a linear combination of columns of A.

Matrix multiplication (in general)

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 5 & 6 \\ 21 & 9 & 19 \end{bmatrix}$$
Note that # cols. of A = # of rows of B

Computing AB via linear combinations of columns of A:

1st column of
$$AB = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 21 \end{bmatrix}$$
2nd column of $AB = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$
3rd column of $AB = 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 6 \\ 19 \end{bmatrix}$

While you should understand this approach, it is often easier to multiply matrices via dot products.

Matrix multiplication (in general)

In terms of dot products,

the
$$(i, j)$$
-entry of A] · $[jth column of B]$
viewed as column vectors

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

since
$$\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = 4$$

Matrix multiplication (in general)

In terms of dot products,

the
$$(i,j)$$
-entry of A] · [j th column of B]
viewed as column vectors

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 5 & 6 \\ 21 & 9 & 19 \end{bmatrix}$$

$$A \qquad B$$

since
$$\begin{bmatrix} 2\\1\\5 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix} = 19$$

Matrix multiplication

What sizes of matrices can be multiplied together?

For $m \times n$ matrix A and $n \times p$ matrix B, the matrix product AB is an $m \times p$ matrix.

$$m \times n \times p$$

"inner"

parameters

must match

"outer" parameters become

parameters of matrix AB

If A is a square matrix and k is a positive integer, we define

$$A^k = \underbrace{A \cdot A \cdot \cdots A}_{k \text{ factors}}$$