Subspaces, basis, dimension, and rank
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Subspaces of R”

algebraic generalization of
geometric examples of lines and

planes through the origin

One motivation for notion
of subspaces of R”
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Subspace

Definition A S of R" is a set of vectors in R” such that
(1) 0eS [ contains zero vector ]
(2) fad,veSs, theni+vesS [ closed under addition ]
(3) if e Sand c € R, then cie€ S [ closed under scalar mult. |

Subspace

Example Definition A S of R is a set of vectors in R"” such that

(1)0es
X1 .
IsS={[y]: x>0,y >0} (2) if 7,7 €S, then T+ 7 €S
a subspace of R?? (3) f 7€ S and c € R, then cire S
No!

b <5 v = 5] e

= S is not closed under scalar multiplication




Subspace

Example Definition A S of R™is a set of vectors in R” such that
a (1)0es
|SS:{[8} :a,beR} (2) if G, 7€S, then T+7 €S
d SUbSpace of R3? (3) if fe Sand c €R, then ciir€ S

YES!

(1) 0= [(8)} € S = contains zero vector v/

(2) Letd,veS. Thenud [Zﬂ and vV = [Zoi} for some ap, a», by, b € R.

It follows that

ar+az
= = closed under
VvV = |: bl‘gb2 i| 6 S addition \/

S

(3) LetdeS,ceR. Then = [g} for some a, b € R. It follows that

a ca
- o closed under
cu==c {8} = [Cob] €esS = scalar mult. v

Span Is a subspace!

Theorem. Let Vi, b, ..., Vi € R". Then S =span(vy, 5, . . ., Vi)
IS a subspace of R".

Proof. We verify the three properties of the subspace definition.
(1) C=0W +0vh +---+ 0¥
= 0 is a linear comb. of ¥, b, ..., v =0¢cS

(2) Letia,weS. Then G=cVj + -+ ¢V and
W= diV] + -+ dgVi for some scalars ¢;, d;. Thus,
T+ W= (Vi + -+ ckVk) + (diVh + - + di Vi)
:EC1+d1)\71+"‘+(Ck+dk)\7kj = 0d+wesS

VvV
linear comb. of V4, ..., Vi

(3) LetdeS,ceR. Youfinish the proof (show that ci € S).




Column and row spaces of a matrix

Definition For an m x n matrix A with column vectors
Vi, Vo, ..., v, € R™, the of Alis span(vy, va, ..., Va).

col(A) is a subspace of R™ since it is the
span of a set of vectors in R"™

Definition For an m x n matrix A with row vectors
Mo, ..., rm € R", the of Alis span(r, o, ..., Fm).

row(A) is a subspace of R" since it is the
span of a set of vectors in R”

Characterizing column and row spaces

Important relationships:

* Column space 3 scalars xq, %, . . ., x, such that

b is in | | AX = b
b € col(A) <= spanof <= || +...x, |V,| =bh < is consistent
cols of A | | (has a sol'n)

* Row space

- = To _ RT
berow(A) < BT ecol(AT) « A X=D has a

solution
since columns of AT
are the rows of A
OR bis /
s - A Ri+kR; A
b € row(A) <= linear comb. <= i \ -
P
of rows of A b ori>J 0




Null space of a matrix

Definition For an m x n matrix A, the of A is the set of all

solutions to AX =0, i.e., null(A)

null(A) = {X: AX = 0}.

null(A) is a set of vectors in R”

Question s null(A) a subspace of R"?  YES!

This statement requires proof,
and we will tackle this on Friday.

Basis

Definition A set of vectors B = {v, ..., Vk}is a
subspace S of R" if

e span(B) =S,

e and B is a linearly independent set.

1 0

Example Standard basis for R3 is 0, |1
1 o

but another basis for R3 is 1], (1

0 1

for a

choice of

basis is not
unique




More on basis

1 0 0
Definition A set of vectors B = {v7,. .., Vilisa for a Standard basis for R3 is 0|, [1].,]0
subspace S of R” if

e span(B) =S, 11 fo] [1
. 3.
e and B is a linearly independent set. but another basis for R* is LIJ ’ {ﬂ ’ |:O} ’

Do you believe such bases

Consider exist for R37
SRR
Lo No!

Bi=14q |x]|. |y
| X3] V3 Why not?
x| [n] [z] [wm o span(B;) # R3

® NOT linearly naep.
| X3 [V3] Z3 w3 ° / °
proof by

Dimension -
/contradlctlon

Theorem. Any two bases of a subspace have the same number of vectors.

Definition The number of vectors in a basis of a subspace S is called
the of S.

Example dim(R")=n

0 0
1 0

since {€1,6,...,6,} = A0 1,11, »isabasis for R”
0] |[O] [ 1]

Side-note The trivial subspace {0} has no basis

since any set containing the zero vector is linearly dependent, so dim({0}) = 0.




Important basis results

Theorem. Given a basis B = {4, ..., Vx} of subspace S, there is

a unique way to express any Vv € S as a linear combination of
basis vectors vy, . .., V.

Proof sketch on Friday.

Theorem. The vectors {4, ..., Vy} form a basis of R" if and only if
rank(A) = n, where A is the matrix with columns vy, ..., V,.
Proof sketch (=). A% =0 has only cols of A are
=7 trivial sol'n X =0 linearly indep. X\
rank(A) = n = RREF of A ) coIs‘ 01;A arne
is/ X A% = b is consistent colsof A > basis for R
for any b € R" span R”

Same ideas can be used to prove converse direction.

Fundamental Theorem of Invertible Matrices (extended)

Theorem. Let A be an nx n matrix. The following statements are
equivalent:

e As invertible.

e AX=bhas a unique solution for all beR"
e AX =0 has only the trivial solution X = 0.
e The RREF of Ais |.

e Ais the product of elementary matrices.

e rank(A) = n.

e Columns of A form a basis for R”"




Finding bases for fundamental subspaces of a matrix

. . row(A)
Given matrix A, how do we
_ col(A) 7
find bases for subspaces
null(A)
First, get RREF of A. A EROs, o

Finding bases for fundamental subspaces of a matrix

EROs do not change
row space of a matrix.

Columns of A have the
same dependence
relationship

as columns of R.

basis for basis for nonzero

row(A)  row(R) 7 rows of R

columns of A that
— correspond to columns
of R w/leading 1's

basis for
col(A)

e solve AX=0, i.e.solve RX=0
* express sol’'ns in terms of free variables, e.g.,

X

Xl . 4 x basis vectors
2 3 for null(A)

X3 [




Example of matrix subspaces’ bases

1 2 3 4 5 10 -1 -2 -3
A=1l6 7 8 9 10| AFESR=-1l01 2 3 4
11 12 13 14 15 00 0 0 O

basis for

— 1 -1 -2 -3 1 2 3 4
= {0 ][0 1}
basis for 1 ?
col(A) 11 19

Example of matrix subspaces’ bases

1 2 3 4 5
A=16 7 8 9 10 A
11 12 13 14 15

1
EROS p—lo01 2 3 4
0

1] [27 [3]
X1 — X3 —2X4 —3x5 =0 _ 9 -3 4
basis for
Xo + 2X3 + 3X4 + 4X5 =0 nuII(A) = 11,{01],(0
X3, Xa, Xs free 0 1 0
0| [0 [1]
X1 ] [ X3+ 2Xx3 + 3x5 | [ 1] [ 2] [ 3]
Xo —2Xx3 — 3X3 — 4x5 —2 -3 —4
X = |x3 X3 =x3| 1| 4+x2| 0| +x5|0
X4 X4 0 1 0
| X5 X5 0 i i 0 | i 1 i







Example related to column space

1 0 1 2 1
. = ?
A L 10 b=3 ¢ ! :z [g 2 EZ:E/;\\;?
0O 0 O 0 1 '

Determine if AX = b has a solution.

system is consistent

1 0 112 10 1 12| (hasinfinite # of sol'ns)
1 1 03| 101 —1]1
0 0 0/O0 0 0

Yes, it is in column
space of A.

A solution to the system gives scalar coefficients for linear combination.

X1 =2-—2Xx3 one 2 1 0 1
X =1+ x3 <ol'n X=11 b=2111+1|[1{+0]0
x3 free 0 0 0 0

Example related to column space

1 0 1 . 2 1 . ,
A=11 1 0 h— |3 2= |1 ISIiECOI(A).
0O 0 O 0 1 Is ¢ € col(A)?

Any vector in the column space of A
has O in its third component.

Thus, the vector ¢ is not in the column space of A.




Example related to row space

A= [_16 _31] b=1[2 1] Is b € row(A)?
2
Approach 1: Approach 2:
Is b7 € col(AT)? b € row(A) <
Determine if A7X = b’ has a solution. Al Rtkr, [ A
B for i>j ’ 0
—6 1 2 R2+%R1 -6 1|2
3 31 0 0]2 -6 3 —6 3
1 32500 0
inconsistent system 2 1 Ratg R 0 2
No, b & row(A). No, b & row(A).
Example related to null space
1 -1 0 2 We need to
A=12 -2 1 1 Find null(A). solve AX = 0.
4 —4 3 -1
Xo, x4 free vars
1 -1 0 2 |0 1 -1 0 2 |0
Wehave | 2 -2 1 1 (0| %10 0 1 -3|0
4 —4 3 —-110 O 0 0 0|0
Convert to X1 — Xo + 2X4 - O Solve for
equations. X3 —3x4 =0 x1 and xs.
Xo — 2Xa 1 -2 1 -2
g X0 _ 1 n 0 1 0
= 3 |~ ol T 3 null(A) = | span ol ' | 3
X4 0 1 0 1

for xo, x4 € R




