Determinants and eigenvalues

Math 40, Introduction to Linear Algebra Wednesday, February 15, 2012

Amazing facts about determinants

det A can be found by "expanding" along any row or any column

Consequence: Theorem. The determinant of a triangular matrix is the product of its diagonal entries.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$

$$\det(A) = 1 \cdot 5 \cdot 8 \cdot 10 = \boxed{400}$$

Amazing facts about determinants

EROs barely change the determinant, and they do so in a predictable way.

EROs	effect on det A	_
swap two rows	changes sign	Strategy to compute det A more quickly for general matrices A
multiply row	multiply det	\downarrow
by scalar <i>c</i>	by scalar <i>c</i>	Perform EROs to get
add $c \cdot \text{row } i$ to row j	no change at all!	REF of A and compute det A based on det of REF

Amazing facts about determinants

Theorem. A square matrix A is invertible if and only if $\det A \neq 0$.

$$\det(A) = \det(A^T)$$

$$\det(AB) = \det(A) \det(B)$$

$$det(A) det(A^{-1}) = det(AA^{-1})$$
$$= det(I) = 1$$

$$\Rightarrow \det(A^{-1}) = \frac{1}{\det A}$$

Example using properties of determinant

Example If det A = -3 for a 5 x 5 matrix A, find the determinant of the matrix $4A^3$.

We have
$$\det(4A^3) = 4^5 \det(A^3)$$
$$= 4^5 [\det(A)]^3$$
$$= 4^5 [\det(A)]^3$$

Another property of the determinant?

Question True or false: det(A + B) = det A + det B?

False!

Consider
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

Then
$$A + B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 $det(A + B) = 4 \neq 0 = det A + det B$

Eigenvalues and eigenvectors

Introduction to eigenvalues

Let A be an $n \times n$ matrix.

If $A\vec{x} = \lambda \vec{x}$ for some scalar λ and some nonzero vector \vec{x} ,

then we say λ is an *eigenvalue* of A and \vec{x} is an *eigenvector* associated with λ .

Viewed as a linear transformation from \mathbb{R}^n to \mathbb{R}^n A sends vector \vec{x} to a scalar multiple of itself $(\lambda \vec{x})$.

Eigenvalues, eigenvectors for a 2x2 matrix

Any (nonzero) scalar multiple of an eigenvector is itself an eigenvector (associated w/same eigenvalue).

$$A(c\vec{x}) = c(A\vec{x}) = c(\lambda\vec{x}) = \lambda(c\vec{x})$$

Graphic demonstration of eigenvalues and eigenvectors: eigshow

eigshow demonstrates how the image $A\vec{x}$ changes as we rotate a unit vector \vec{x} in \mathbb{R}^2 around a circle

in particular, we are interested in knowing when $A\vec{x}$ is parallel to \vec{X}

Finding eigenvalues of A

We want nontrivial solutions to

$$A\vec{x} = \lambda \vec{x} \iff A\vec{x} - \lambda \vec{x} = \vec{0} \iff A\vec{x} - \lambda I\vec{x} = \vec{0}$$

When does this homogeneous system have a solution other than $\vec{x} = \vec{0}$?

Must have that $A - \lambda I$ is not invertible, which means that $det(A - \lambda I) = 0$

eigenvalues of
$$A$$

$$\downarrow \downarrow$$
 find values of λ such that $\det(A-\lambda I)=0$

given eigenvalue λ , associated eigenvectors are nonzero vectors in null($A - \lambda I$)

Example of finding eigenvalues and eigenvectors

Example Find eigenvalues and corresponding eigenvectors of
$$A$$
. $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & -1 \\ 2 & -1 - \lambda & 5 \\ 0 & 0 & 2 - \lambda \end{vmatrix}$$

characteristic polynomial
$$= (2 - \lambda) \begin{vmatrix} 1 - \lambda & 0 \\ 2 & -1 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(1 - \lambda)(-1 - \lambda)$$

$$\lambda = 2, 1, \text{ or } -1$$

Example of finding eigenvalues and eigenvectors

Example Find eigenvalues and corresponding eigenvectors of
$$A$$
.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\lambda = 2, 1, \text{ or } -1$$

$$(\lambda = 2) \quad \text{Solve } (A - 2I)\vec{x} = \vec{0}.$$

$$\begin{bmatrix} A - 2I \mid 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 \mid 0 \\ 2 & -3 & 5 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix} \xrightarrow{\mathsf{EROs}} \begin{bmatrix} 1 & 0 & 1 \mid 0 \\ 0 & 1 & -1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
 eigenvectors of A for $\lambda = 2$ are
$$\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
 for $c \neq 0$ for any $x_3 \in \mathbb{R}$

Example of finding eigenvalues and eigenvectors

Example Find eigenvalues and corresponding eigenvectors of A. $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$

Solve
$$(A-2I)\vec{x} = \vec{0}$$
. eigenvectors of A for $\lambda = 2$ are $c \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ for $c \neq 0$

$$E_2 = \underset{\text{for } \lambda = 2}{\textit{eigenspace} \text{ of } A} = \left\{ \begin{array}{l} \text{set of all eigenvectors} \\ \text{of } A \text{ for } \lambda = 2 \end{array} \right\} \cup \left\{ \vec{0} \right\}$$
$$= \text{null}(A - 2I)$$
$$= \text{span} \left(\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right)$$

Example of finding eigenvalues and eigenvectors

Example Find eigenvalues and corresponding eigenvectors of
$$A$$
.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\lambda = 2, 1, \text{ or } -1$$

$$\lambda = 2$$
 $E_2 = \operatorname{span} \begin{pmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$

$$\lambda = 1$$
 Solve $(A - I)\vec{x} = \vec{0}$. $\Longrightarrow E_1 = \text{span}\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

$$\lambda = -1$$
 Solve $(A + I)\vec{x} = \vec{0}$. $\Longrightarrow E_{-1} = \operatorname{span} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$

Eigenvalues, eigenvalues... where are you?

Example Find eigenvalues of
$$A$$
. $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1$$
$$= \lambda^2 - 2\lambda + 2$$
$$\Rightarrow \lambda = \frac{2 \pm \sqrt{4 - 8}}{2} = 1 \pm i$$

Eigenvalues are complex!