
Diagonalizability
Encodings, coordinates, and change of basis

Math 40, Introduction to Linear Algebra
Wednesday, February 22, 2012

Characterization of diagonalizability

Questions

• When is A diagonalizable?

• If A is diagonalizable, how do we find matrices P and D such that
P−1AP = D?

Given matrix A, suppose A has eigenvalues λ1, λ2, . . . ,λn with corre-
sponding eigenvectors �x1, �x2, . . . , �xn. Then

A�x1 = λ1�x1

A�x2 = λ2�x2
...

A�xn = λn�xn
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λ1

λ2
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λn





=⇒ AP = PD

When is P invertible? =⇒ eigenvectors of A are linearly independent

Theorem. Let A be an n× n matrix. Then

A is diagonalizable ⇐⇒ A has n linearly independent
eigenvectors.
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If we know that A is diagonalizable, then P-1AP = D, and 
• columns of P are n linearly independent eigenvectors of A, 
• and diagonal entries of D are eigenvalues of A.  

Down the road, you will learn that a representative matrix of each class

is called the Jordan canonical form.

Ideally, given a matrix, we would like it to be similar to a....diagonal

matrix! (Then eigenvalues would be precisely the diagonal entries of

the diagonal matrix to which it is similar.)

Definition A matrix A is diagonalizable if it is similar to a diagonal

matrix D, i.e.,

P−1AP = D

for some invertible matrix P and some diagonal matrix D

=⇒ AP = PD.

Example The matrix A =
� 4 −2

1 1

�
is diagonalizable since A ∼ D

where D =
�

2 0
0 3

�
. Check that

� 4 −2
1 1

�
� �� �

A

�
1 2
1 1

�
� �� �

P

=
�

1 2
1 1

�
� �� �

P

�
2 0
0 3

�
� �� �

D

,

and P is invertible because det P �= 0.

Example We claim that the matrix A =
�

0 1
0 0

�
is not diagonalizable.

Suppose, by way of contradiction (BWOC), that A is diagonalizable,

i.e., there exist invertible matrix P and diagonal matrix D such that

P−1AP = D. Then A = PDP−1
, and we have

0 = A2
= (PDP−1

)(PDP−1
) = PD2P−1

=⇒ 0 = D2

=⇒ 0 = D

=⇒ A = PDP−1
= P 0 P−1

= 0 ⇒⇐

We have arrived at a contradiction, so it must be that A is not diago-

nalizable.
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Example of diagonalization

If we know that A is diagonalizable, then P−1AP = D, and

• columns of P are n linearly independent eigenvectors of A,

• and diagonal entries of D are eigenvalues of A.

Example Consider A =

�
3 0 0
−2 4 2
−2 1 5

�
.

• Find eigenvalues of A.

0 = det(A− λI) = (3− λ)[(4− λ)(5− λ)− 2]

= (3− λ)(λ2 − 9λ + 18)

= (3− λ)(λ− 3)(λ− 6)

Therefore, λ1 = 3 (alg. mult. 2) and λ2 = 6.

• Find eigenspaces of A.

Solve (A− 3I)�x = �0. =⇒ E3 = span

��
1
2
0

�
,

�
1
0
1

��

Solve (A− 6I)�x = �0. =⇒ E6 = span

��
0
1
1

��
.

• Construct matrices P and D.

D =

�
3 0 0
0 3 0
0 0 6

�
, P =

�
1 1 0
2 0 1
0 1 1

�
.

Then AP = PD and P is invertible, so P−1AP = D and A is
diagonalizable.

Theorem. If A is an n×n matrix with distinct eigenvalues λ1, . . . ,λk,
then the collection of all basis vectors for the eigenspaces Eλ1, Eλ2, . . . , Eλk

is linearly independent.
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Then AP = PD and P is 
invertible, so P-1AP = D 
and A is diagonalizable.

Linearly independent eigenvectors
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Proof uses the fact that distinct eigenvalues have eigenvectors that are linearly independent.

Proof is based on the fact that distinct eigenvalues have eigenvectors
that are linearly independent.

Corollary. If A is an n × n matrix with n distinct eigenvalues,
then A is diagonalizable.

Remark In our previous example, the 3×3 matrix A has two distinct
eigenvalues: 3 (alg. mult. 2) and 6 (alg. mult. 1).

basis for E3 basis for E6∪We know is a linearly independent set.

can have at most 
two vectors

can only have 
one vector

For any eigenvalue, 
algebraic mult. ! geometric mult.

Thus, in order for A to be diag’able, we needed the eigenspace E3 to
be two-dimensional (its basis has two vectors), i.e.,

geom. mult. of eigenvalue 3 = dim(E3) = 2 = alg. mult. of eigenvalue 3.

Theorem. Let A be an n × n matrix with distinct eigenvalues
λ1, λ2, . . . ,λk. Then the following are equivalent:

(1) A is diagonalizable.

(2) Algebraic and geometric multiplicities are equal for each eigen-
value of A.

(3) Union of bases of eigenspaces of A has n vectors.

Invertibility and diagonalizability Which of the following state-
ments are true?

• If A is diag’able, then A is invertible.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 5

In our last example, the 3 x 3 matrix A had two distinct eigenvalues:  
     3 (alg. mult. 2) and 6 (alg. mult. 1).  

Proof is based on the fact that distinct eigenvalues have eigenvectors
that are linearly independent.

Corollary. If A is an n × n matrix with n distinct eigenvalues,
then A is diagonalizable.

Remark In our previous example, the 3×3 matrix A has two distinct
eigenvalues: 3 (alg. mult. 2) and 6 (alg. mult. 1).

basis for E3 basis for E6∪We know is a linearly independent set.

can have at most 
two vectors

can only have 
one vector

For any eigenvalue, 
algebraic mult. ! geometric mult.

Thus, in order for A to be diag’able, we needed the eigenspace E3 to
be two-dimensional (its basis has two vectors), i.e.,

geom. mult. of eigenvalue 3 = dim(E3) = 2 = alg. mult. of eigenvalue 3.

Theorem. Let A be an n × n matrix with distinct eigenvalues
λ1, λ2, . . . ,λk. Then the following are equivalent:

(1) A is diagonalizable.

(2) Algebraic and geometric multiplicities are equal for each eigen-
value of A.

(3) Union of bases of eigenspaces of A has n vectors.

Invertibility and diagonalizability Which of the following state-
ments are true?

• If A is diag’able, then A is invertible.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 5

Proof is based on the fact that distinct eigenvalues have eigenvectors
that are linearly independent.

Corollary. If A is an n × n matrix with n distinct eigenvalues,
then A is diagonalizable.

Remark In our previous example, the 3×3 matrix A has two distinct
eigenvalues: 3 (alg. mult. 2) and 6 (alg. mult. 1).

basis for E3 basis for E6∪We know is a linearly independent set.

can have at most 
two vectors

can only have 
one vector

For any eigenvalue, 
algebraic mult. ! geometric mult.

Thus, in order for A to be diag’able, we needed the eigenspace E3 to
be two-dimensional (its basis has two vectors), i.e.,

geom. mult. of eigenvalue 3 = dim(E3) = 2 = alg. mult. of eigenvalue 3.

Theorem. Let A be an n × n matrix with distinct eigenvalues
λ1, λ2, . . . ,λk. Then the following are equivalent:

(1) A is diagonalizable.

(2) Algebraic and geometric multiplicities are equal for each eigen-
value of A.

(3) Union of bases of eigenspaces of A has n vectors.

Invertibility and diagonalizability Which of the following state-
ments are true?

• If A is diag’able, then A is invertible.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 5

Proof is based on the fact that distinct eigenvalues have eigenvectors
that are linearly independent.

Corollary. If A is an n × n matrix with n distinct eigenvalues,
then A is diagonalizable.

Remark In our previous example, the 3×3 matrix A has two distinct
eigenvalues: 3 (alg. mult. 2) and 6 (alg. mult. 1).

basis for E3 basis for E6∪We know is a linearly independent set.

can have at most 
two vectors

can only have 
one vector

For any eigenvalue, 
algebraic mult. ! geometric mult.

Thus, in order for A to be diag’able, we needed the eigenspace E3 to
be two-dimensional (its basis has two vectors), i.e.,

geom. mult. of eigenvalue 3 = dim(E3) = 2 = alg. mult. of eigenvalue 3.

Theorem. Let A be an n × n matrix with distinct eigenvalues
λ1, λ2, . . . ,λk. Then the following are equivalent:

(1) A is diagonalizable.

(2) Algebraic and geometric multiplicities are equal for each eigen-
value of A.

(3) Union of bases of eigenspaces of A has n vectors.

Invertibility and diagonalizability Which of the following state-
ments are true?

• If A is diag’able, then A is invertible.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 5

Proof is based on the fact that distinct eigenvalues have eigenvectors
that are linearly independent.

Corollary. If A is an n × n matrix with n distinct eigenvalues,
then A is diagonalizable.

Remark In our previous example, the 3×3 matrix A has two distinct
eigenvalues: 3 (alg. mult. 2) and 6 (alg. mult. 1).

basis for E3 basis for E6∪We know is a linearly independent set.

can have at most 
two vectors

can only have 
one vector

For any eigenvalue, 
algebraic mult. ! geometric mult.

Thus, in order for A to be diag’able, we needed the eigenspace E3 to
be two-dimensional (its basis has two vectors), i.e.,

geom. mult. of eigenvalue 3 = dim(E3) = 2 = alg. mult. of eigenvalue 3.

Theorem. Let A be an n × n matrix with distinct eigenvalues
λ1, λ2, . . . ,λk. Then the following are equivalent:

(1) A is diagonalizable.

(2) Algebraic and geometric multiplicities are equal for each eigen-
value of A.

(3) Union of bases of eigenspaces of A has n vectors.

Invertibility and diagonalizability Which of the following state-
ments are true?

• If A is diag’able, then A is invertible.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 5

Hence, for A to be diagonalizable, we need eigenspace E3 to be two-dimensional.
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λ1, λ2, . . . ,λk. Then the following are equivalent:
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(2) Algebraic and geometric multiplicities are equal for each eigen-
value of A.

(3) Union of bases of eigenspaces of A has n vectors.

Invertibility and diagonalizability Which of the following state-
ments are true?

• If A is diag’able, then A is invertible.
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Invertibility and diagonalizability

• If A is invertible, then A is diag’able.

• If A is not diag’able and not invertible, then A is the matrix of all
zeros (A = 0).

All are false!!

A
C

B
D

inverti
ble diagonalizable

Venn diagram

A =

�
2 1 0
0 2 0
0 0 3

�
, B =

�
2 −1 2
0 0 −2
0 0 3

�
, C =

�
1 4 6
0 2 5
0 0 3

�
, D =

�
0 0 0
0 1 1
0 0 1

�
.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 6

Which of the following statements are true?
• If A is diagonalizable, then A is invertible.
• If A is invertible, then A is diagonalizable.
• If A is not diagonalizable and not invertible, then A is the matrix of all 

zeros (A = 0). 
All are false!!

• If A is invertible, then A is diag’able.

• If A is not diag’able and not invertible, then A is the matrix of all
zeros (A = 0).

All are false!!

A
C

B
D

inverti
ble diagonalizable

Venn diagram

A =

�
2 1 0
0 2 0
0 0 3

�
, B =

�
2 −1 2
0 0 −2
0 0 3

�
, C =

�
1 4 6
0 2 5
0 0 3

�
, D =

�
0 0 0
0 1 1
0 0 1

�
.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 6

• If A is invertible, then A is diag’able.

• If A is not diag’able and not invertible, then A is the matrix of all
zeros (A = 0).

All are false!!

A
C

B
D

inverti
ble diagonalizable

Venn diagram

A =

�
2 1 0
0 2 0
0 0 3

�
, B =

�
2 −1 2
0 0 −2
0 0 3

�
, C =

�
1 4 6
0 2 5
0 0 3

�
, D =

�
0 0 0
0 1 1
0 0 1

�
.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 6

• If A is invertible, then A is diag’able.

• If A is not diag’able and not invertible, then A is the matrix of all
zeros (A = 0).

All are false!!

A
C

B
D

inverti
ble diagonalizable

Venn diagram

A =

�
2 1 0
0 2 0
0 0 3

�
, B =

�
2 −1 2
0 0 −2
0 0 3

�
, C =

�
1 4 6
0 2 5
0 0 3

�
, D =

�
0 0 0
0 1 1
0 0 1

�
.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 6

• If A is invertible, then A is diag’able.

• If A is not diag’able and not invertible, then A is the matrix of all
zeros (A = 0).

All are false!!

A
C

B
D

inverti
ble diagonalizable

Venn diagram

A =

�
2 1 0
0 2 0
0 0 3

�
, B =

�
2 −1 2
0 0 −2
0 0 3

�
, C =

�
1 4 6
0 2 5
0 0 3

�
, D =

�
0 0 0
0 1 1
0 0 1

�
.

Lecture 15 Math 40, Spring ’12, Prof. Kindred Page 6



Differentiation as a linear transformation

P2 =⇒ set of all polynomials of degree at most 2 with real coefficients
=⇒ set of all polynomials of degree at most 3 with real coefficientsP3

vector spaces

Consider linear transformation T : P3 → P2 of differentiation:

T (p) = p� for polynomials p ∈ P3.

In other words,
T (ax3 + bx2 + cx + d) = 3ax2 + 2bx + c.

Verify that this 
is a linear 

transformation.

What is a basis for     ?P3 What is a basis for     ?P2

B =
�
x3, x2, x, 1

�
D =

�
x2, x, 1

�

Encodings and coordinates
Consider linear transformation T : P3 → P2 of differentiation:

T (p) = p� for polynomials p ∈ P3.

B =
�
x3, x2, x, 1

�
D =

�
x2, x, 1

�

p ∈ P3 =⇒ p = ax3 + bx2 + cx + d

q ∈ P2 =⇒ q = ax2 + bx + c

Then

=⇒ [ q ]
D

=




a
b
c





D

∈ R3

encoding of q with respect to basis D

=⇒ [ p ]
B

=





a
b
c
d





B

∈ R4

encoding of p with respect to basis B,
or coordinates of v with respect to B

where a, b, c, d are scalars

where a, b, c are scalars

Important basis results

Proof sketch on Friday.

rank(A) = n RREF of A
is I⇒

A�x = �0 has only
trivial sol’n �x = �0⇒

A�x = �b is consistent
for any �b ∈ Rn

⇒

cols of A are 
linearly indep.⇒

cols of A 
span    .Rn⇒

cols of A are
basis for Rn

⇒

⇒

Proof sketch (   ).⇒

Same ideas can be used to prove converse direction.

Theorem. Given a basis B = {�v1, . . . ,�vk} of subspace S, there is
a unique way to express any �v ∈ S as a linear combination of
basis vectors �v1, . . . ,�vk .

Theorem. The vectors {�v1, . . . ,�vn} form a basis of Rn if and only if
rank(A) = n, where A is the matrix with columns �v1, . . . ,�vn.

Fundamental Theorem of Invertible Matrices (extended)

Theorem. Let A be an n x n matrix.  The following statements are  
equivalent:

• A is invertible.
•            has a unique solution for all          .
•             has only the trivial solution         . 
• The RREF of A is I.
• A is the product of elementary matrices.
• rank(A) = n.
• Columns of A form a basis for    .

A�x = �b �b ∈ Rn

A�x = �0 �x = �0

Rn



Matrix of the linear transformation
Now that we have a way to encode the polynomials, we consider 
encoding our linear transformation T using a matrix.  

To find the 
matrix of T, we 
ask ourselves 

what the linear 
trans. T  does to 

basis vectors.

B =
�
x3, x2, x, 1

�

T (x3) = 3x2 T (x2) = 2x T (x) = 1 T (1) = 0

[ 3x2 ]
D

=




3
0
0





D

[ 2x ]
D

=




0
2
0





D

[ 1 ]
D

=




0
0
1





D

[ 0 ]
D

=




0
0
0





D

D =
�
x2, x, 1

� matrix of T 
with respect to 
bases B and D

[T ]
D←B

=




3 0 0 0
0 2 0 0
0 0 1 0





D←B

T : P3 → P2 =⇒
�

3× 4 matrix
of T

�

Using the matrix of T

[T ]
D←B

=




3 0 0 0
0 2 0 0
0 0 1 0





D←B

How do we find the image of a 
polynomial p under T ?

How do we use T to find the derivative of p ?

Theorem.

[T (v) ]
D

=



 T





D←B

�
v

�
B

Example:  Consider p(x) = 5x3 - 3x + 2.  We want to find T(p(x)).  We 
have 


3 0 0 0
0 2 0 0
0 0 1 0





D←B





5
0
−3
2





B

=




15
0
−3





D

decode back to polynomial

p�(x) = T (p(x))

= 15x2 − 3



Diagram

P2P3

R4 R3

encoding 
using 

basis B

decoding 
using 

basis D

T



 T





D←B

Change of basis
In our last example, we chose a basis                       for the vector 
space =⇒ set of all polynomials of degree at most 3 with real coefficients.P3

B =
�
x3, x2, x, 1

�

What if we decided we wanted to 
use a different basis for this space?

C =
�
(x + 1)3, x2, x + 1, x− 1

�
B =

�
x3, x2, x, 1

�

[x3 ]B =





1
0
0
0





B

[x3 ]C =





1
−3
−2
−1





C

For example,
and

Is it possible to find [ x3 ]C from [ x3 ]B using matrix multiplication?

Yes!!



Change of basis

What is the relationship between encodings of polynomials with respect to B 
and those with respect to C?

C =
�
(x + 1)3, x2, x + 1, x− 1

�
B =

�
x3, x2, x, 1

�

[x3 ]B =





1
0
0
0





B

[x3 ]C =





1
−3
−2
−1





C

For example,
and

P3 P3

basis B basis C

I
the identity 

transformation

Computing change-of-basis matrix

To find the 
matrix of I, we 
ask ourselves 

what the linear 
trans. I  does to 
basis vectors.

change-of-basis 
matrix from 

B to C

C =
�
(x + 1)3, x2, x + 1, x− 1

�
B =

�
x3, x2, x, 1

�

P3 P3

I
the identity 

transformation

I(1) = 1I(x3) = x3 I(x2) = x2 I(x) = x

[x3 ]
C

=





1
−3
−2
−1





C

[x2 ]
C

=





0
1
0
0





C

[x ]
C

=





0
0
1
2
1
2





C

[ 1 ]
C

=





0
0
1
2
− 1

2





C

[ I ]
C←B

=





1 0 0 0
−3 1 0 0
−2 0 1

2
1
2

−1 0 1
2 − 1

2





C←B


