Harvey Mudd College Math Tutorial:
Quotient Rule for Derivatives

Suppose we are working with a function $h(x)$ that is a ratio of two functions $f(x)$ and $g(x)$.

How is the derivative of $h(x)$ related to $f(x)$, $g(x)$, and their derivatives?

Quotient Rule

Let f and g be differentiable at x with $g(x) \neq 0$. Then f/g is differentiable at x and

$$
\left[\frac{f(x)}{g(x)} \right]' = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}.
$$

Proof

Examples

- If $f(x) = \frac{2x + 1}{x - 3}$, then

 $$
f'(x) = \frac{(x - 3) \frac{d}{dx}[2x + 1] - (2x + 1) \frac{d}{dx}[x - 3]}{[x - 3]^2}
 = \frac{(x - 3)(2) - (2x + 1)(1)}{(x - 3)^2}
 = -\frac{7}{(x - 3)^2}.
$$

- If $f(x) = \tan x = \frac{\sin x}{\cos x}$, then

 $$
f'(x) = \frac{\cos(x) \frac{d}{dx}[\sin(x)] - \sin(x) \frac{d}{dx}[\cos x]}{[\cos x]^2}
 = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}
 = \frac{1}{\cos^2(x)}
 = \sec^2(x),
$$

 verifying the familiar differentiation formula for $\tan(x)$.

• If \(f(x) = \frac{1}{g(x)} \), then

\[
f'(x) = \left[\frac{1}{g(x)} \right]' = \frac{g(x) \frac{d}{dx} [1] - (1)g'(x)}{[g(x)]^2}
\]

\[
= \frac{g(x)(0) - (1)g'(x)}{[g(x)]^2}
\]

\[
= -\frac{g'(x)}{[g(x)]^2}.
\]

For example, \(\frac{d}{dx}[x^{-4}] = \frac{d}{dx}[1 - 4x^3] = -\frac{4}{x^4} = -\frac{4}{x^8} = -\frac{4}{x^5} = -4x^{-5} \).

Key Concepts

Quotient Rule

Let \(f \) and \(g \) be differentiable at \(x \) with \(g(x) \neq 0 \). Then \(f/g \) is differentiable at \(x \) and

\[
\left[\frac{f(x)}{g(x)} \right]' = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}.
\]