Skip to Content

Projects in 1984–1985


General Dynamics: Radar Design Using Symbolic Manipulation Software

Advisor
Roland di Franco

The purpose of this project was to develop an automated radar waveform and signal processing analysis tool using a symbolic manipulation package. This facility can be used to demonstrate the effectiveness of radar analysis program by analyzing a simple pulse radar, a high range resolution chirp radar and a synthetic aperture (SAR) radar. This project involved the construction of a general mathematical model of the radar transmission/receiving channel for a moving point target. The model should include N-point diffuse multipath scattering with one point specular reflection and arbitrary transmit and receive antenna gain functions. The output of this model is expressed as a function of range, range rate, transmitted phase and dynamic time delay and phase compensation. The resulting general set of equations was implemented symbolically on a digital computer using a symbolic manipulation package. An interface program was developed for interactive manipulation of the transmitted modulation function and signal processing. The output of the program provides spatial and doppler resolution (ambiguity function) 2D and 3D plots, symbolic representations of the resolution functions, and plots of sensitivity to motion and phase compensation errors.

Honeywell, Inc.: Mathematical Foundations of Realistic Video Simulations

Advisor
Roland di Franco

During the past five years, major technology advancements have made feasible (affordable) the processing of photographic images into realistic video scenes at 30 frames per second TV rates. The purpose of this project was to enhance the evolution of this technology by performing mathematical analysis and algorithm development for transforms to produce “true perspective warp”. The team developed alternative warp transformations which approximate the true perspective and which are based on a sequential processing of raster arrays of pixels as a method for achieving real time processing of images. In particular, the team suggested improvements in the current Honeywell warp algorithm.

Jet Propulsion Laboratory: Parameter Extraction and Transistor Models

Advisor
Ronald Gribben
College
CGU

Mathematical models of semiconductor devices contain parameters which are difficult to measure experimentally. The clinic extracted values for such parameters by applying mathematical techniques to optimize the model behavior by comparison with experimental data. In addition the construction of new models was also considered and their properties examined by application of mathematical analysis. The models are used to discuss problems of circuit design on chips and in VLSI devices.

Jet Propulsion Laboratory: Application of Correlation Techniques for Pattern Recognition

Advisor
John Ferling
College
CMC/CGU

This was a continuation of last year's clinic. The work derived from the problem of updating and reviewing the information gathered by a variety of sensors so as to identify various objects in a scene. Various statistical analyses were performed to correlate the current database with the incoming information and to provide new estimates. Assumptions were made about the statistics and the models were tested on the robustness of these assumptions.

NASA Dryden Flight Research Center: Three Dimensional Computer Graphic Display Of The Dryden Valley

Advisor
James Lucke

The proposed effort involved a simulation study of LDR involving such disciplines as structures, dynamics, materials, optics and thermal effects. Thus a simple basic model and the structure was developed, parallel to the contractor's effort involving finite element modeling and subsequent analysis of the model was achieved by utilizing the STARS program. A VAX 11/750 computer in conjunction with a E/S PS 300 3-D graphics terminal was extensively utilized for pictorial, real-time dynamic simulation of the structure.

Pacific Bell: Telephone Database Information System

Advisor
Henry Krieger

The project called for a study of mechanizing Pacific Bell's system of cable and conduit records. The present mapping system inventoried a multibillion dollar cable network throughout California and Nevada. Pacific asked Harvey Mudd to join in its plans to automate this large and complex system. The project involved system analysis, economic analysis, and development of a model to fit Pacific Bell's needs.

Perkin—Elmer Corporation: Identification Analysis in Mass Spectrometry

Advisor
Robert Chapman
College
CGU

A weighted least-square technique was used in analyzing spectral data from a mass spectrometer. In the presence of statistical noise, equations were selected from an overdetermined system with a view to minimizing the total time spent scanning the spectrum, to achieving a required degree of accuracy and to maintaining an ability to detect the presence of unanticipated compounds in the sample.