hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed or follow us on Twitter.              The Math Fun Facts App!

List All : List Recent : List Popular
About Math Fun Facts / How to Use
Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Fun Fact at the Easy level:

# One Equals Zero!

The following is a "proof" that one equals zero.

Consider two non-zero numbers x and y such that

x = y.
Then x2 = xy.
Subtract the same thing from both sides:
x2 - y2 = xy - y2.
Dividing by (x-y), obtain
x + y = y.
Since x = y, we see that
2 y = y.
Thus 2 = 1, since we started with y nonzero.
Subtracting 1 from both sides,
1 = 0.

What's wrong with this "proof"?

Presentation Suggestions:
This Fun Fact is a reminder for students to always check when they are dividing by unknown variables for cases where the denominator might be zero.

The Math Behind the Fact:
The problem with this "proof" is that if x=y, then x-y=0. Notice that halfway through our "proof" we divided by (x-y).

For a more subtle "proof" of this kind, see One Equals Zero: Integral Form.

How to Cite this Page:
Su, Francis E., et al. "One Equals Zero!." Math Fun Facts. <http://www.math.hmc.edu/funfacts>.

Keywords:    algebra false proof, paradox
Subjects:    algebra, other
Level:    Easy
Fun Fact suggested by:   Joshua Sabloff
Suggestions? Use this form.
4.20
current
rating
Click to rate this Fun Fact...
*   Awesome! I totally dig it!
*   Fun enough to tell a friend!
*   Mildly interesting
*   Not really noteworthy
and see the most popular Facts!
New: get the MathFeed iPhone App!

Brings you news and views on math:
showcasing its power, beauty, and humanity Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College! 