Math Fun Facts!
hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed   or follow us on Twitter.
Get a random Fun Fact!
or
No subject limitations
Search only in selected subjects
    Algebra
    Calculus or Analysis
    Combinatorics
    Geometry
    Number Theory
    Probability
    Topology
    Other subjects
  Select Difficulty  
Enter keywords 

  The Math Fun Facts App!
 
  List All : List Recent : List Popular
  About Math Fun Facts / How to Use
  Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Fun Fact at the Medium level:

Monty Hall Problem

Figure 1
Figure 1

Here's a problem that makes the round every few years, and each time, it is hotly debated.

You are on a game show. You are presented with a choice of 3 doors: behind one is a luxury car, and behind the other two are nothing. The host asks you pick one of the doors.

After you do this, as part of the game he opens one unpicked doors which he knows is empty. There are now only the door you picked and one remaining door which are unopened. You are asked if you would like to switch your choice. Should you switch?

Presentation Suggestions:
Another version of this problem uses cards in a game called "three-card monte", often played by scam artists on the streets of New York who prey on easily-duped tourists.

The Math Behind the Fact:
The Monty Hall Problem, or Monty Hall Paradox, as it is known, is named after the host of the popular game show "Let's Make a Deal" in the 1960's and 70's, who presented contestants with exactly this scenario. The answer is YES, you should switch, because the probability that you will find the car by doing so is 2/3. This is because the probability that you picked the correct door in the first place does not change; it is still 1/3, regardless of the game show host's actions.

Many people are fooled into thinking that once one of the doors is eliminated that the probability between the remaining two doors is now 50-50, but this is incorrect.

There are many ways to expose the fallacy; here's one heuristic argument. Suppose you play this game 600 times. About 200 times you will pick the right door at the start. Yay! About 400 times you will not. But the game show host will never open the door with the car behind it, so each of those 400 times the car is behind the unopened door that you did not originally pick. So 400 out of 600 times you should switch, i.e., 2/3 of the time.

Another way to see this is to examine an extreme case. Suppose you play this game with a deck of 52 cards, trying to pick the ace of spades, and you pick one card. Now suppose that of the remaining 51 cards, the dealer turns over 50 cards which he knows are not the ace of spades. This leaves one unturned card, aside from the one you picked. Should you switch? Of course! The probability that you picked the correct card to begin with is 1/52, and the probability that it is in the other 51 cards is 51/52. Neither of these probabilities are changed by the dealer's actions, since he knows the cards and will never turn over the ace of spades. You should therefore switch your choice.

How to Cite this Page:
Su, Francis E., et al. "Monty Hall Problem." Math Fun Facts. <http://www.math.hmc.edu/funfacts>.

Keywords:    probability, Monte Hall Problem, Monty Hall Paradox, Monte Hall Paradox, puzzle
Subjects:    probability
Level:    Medium
Fun Fact suggested by:   Francis Su
Suggestions? Use this form.
3.80
 
current
rating
Click to rate this Fun Fact...
    *   Awesome! I totally dig it!
    *   Fun enough to tell a friend!
    *   Mildly interesting
    *   Not really noteworthy
and see the most popular Facts!
Get the Math Fun Facts
iPhone App!

Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College!