Math Fun Facts!
hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed   or follow us on Twitter.
Get a random Fun Fact!
or
No subject limitations
Search only in selected subjects
    Algebra
    Calculus or Analysis
    Combinatorics
    Geometry
    Number Theory
    Probability
    Topology
    Other subjects
  Select Difficulty  
Enter keywords 

  The Math Fun Facts App!
 
  List All : List Recent : List Popular
  About Math Fun Facts / How to Use
  Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Fun Fact at the Medium level:

Volume of a Cone in N Dimensions

One of the first geometric formulas we learn in plane geometry is that the area of a triangle is:

Area of a Triangle = (1/2) * Base Width * Height.

So it is natural to wonder how this might generalize to pyramids in n-dimensional geometry. For instance, in 3-dimensions, the volume of a pyramid is:

Volume of Pyramid = (1/3) * Base Area * Height.

The same formula actually holds for a cone in 3-dimensions as well. Traditionally, one thinks of a cone as an object whose base B is circular, but in fact when the base is any shape, mathematicians still call the object a cone over B, and the formula above still holds for a 3-dimensional cone over any shape B. In general, the cone over any n-dimensional object B is the (n+1)-dimensional object formed by taking a point P outside the n-dimensional hyperplane spanned by B and taking the union of all the line segments from P to points in B. And the volume of such a cone is:

Volume of a Cone over B = (1/n+1) * Volume of B * Height.

Here, the "Height" is the distance from P from the hyperplane spanned by B.

Presentation Suggestions:
Although, the concept of volume in n-dimensional space is something that students sometimes find difficult to comprehend, one may motivate the idea by explaining that the notion of volume is basically a way to quantify the "size" of a set in n-dimensional space in a way that is translation-invariant.

The Math Behind the Fact:
The factor of (1/n+1) is probably the most interesting part about this formula. One way to see where this comes from is to use calculus. Consider a thin slice of the Cone over B, cut by planes parallel to the base B. This slice has cross-sectional volume that is a similar figure to B, except that in each dimension it has been scaled by (x/H). So, if the thickness of the slice is represented by dx, the volume of this slice is represented by:

(Volume of B)*(x/H)n dx,

and integrating this from x=0 to x=H yields the formula above. Moreover, we can see that the factor (1/n+1) emerges from integrating the xn in the expression above!

How to Cite this Page:
Su, Francis E., et al. "Volume of a Cone in N Dimensions." Math Fun Facts. <http://www.math.hmc.edu/funfacts>.

Subjects:    geometry, calculus, analysis
Level:    Medium
Fun Fact suggested by:   Francis Su
Suggestions? Use this form.
4.04
 
current
rating
Click to rate this Fun Fact...
    *   Awesome! I totally dig it!
    *   Fun enough to tell a friend!
    *   Mildly interesting
    *   Not really noteworthy
and see the most popular Facts!
New: get the MathFeed iPhone App!

Brings you news and views on math:
showcasing its power, beauty, and humanity

Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College!