Math Fun Facts!
hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed   or follow us on Twitter.
Get a random Fun Fact!
No subject limitations
Search only in selected subjects
    Calculus or Analysis
    Number Theory
    Other subjects
  Select Difficulty  
Enter keywords 

  The Math Fun Facts App!
  List All : List Recent : List Popular
  About Math Fun Facts / How to Use
  Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Fun Fact at the Medium level:

Thinned-Out Harmonic Series

Figure 1
Figure 1

You're probably already aware that the harmonic series, which is the sum of the reciprocals of all natural numbers, diverges. In fact, it diverges if you take away every other term. It even diverges if you take away nine out of every ten terms.

So, what do you think would happen if we tried to take the sum of reciprocals of all natural numbers that do not contain the number nine (when written in decimal expansion)?

Amazingly, this series converges!

Presentation Suggestions:
Write out the first several terms. Allow students to guess whether or not this converges. For instance, it may appear that this series is divergent, especially when contrasting it with sums of reciprocals of numbers with one or more 9's. That series diverges (easy to show), and this series seems to have "more" terms in it...

The Math Behind the Fact:
Group the terms based on the number of digits in their denominator. There are 8 terms in (1/1+...+ 1/8) each of which is no larger than 1. Consider the next group (1/10+...+1/88). The number of terms is at most the number of ways to choose two ordered digits out of the digits 0..8, and each such term is clearly no larger than 1/10. So this group's sum is no larger than 92/10. Similarly, the sum of the terms in (1/100+...+1/999) is at most 93/102, etc.

So the entire sum is no larger than

9*1 + 9*(9/10) + 9*(92/102) + ... + 9*(9n/10n) + ...

This a geometric series that converges. Thus by the comparison test, the original sum (which is smaller term-by-term) must converge!

How to Cite this Page:
Su, Francis E., et al. "Thinned-Out Harmonic Series." Math Fun Facts. <>.

    G.H. Behforooz, "Thinning out the Harmonic Series",
    Math. Mag., vol. 68, number 4, October 1995.

Keywords:    infinite series, calculus
Subjects:    calculus, analysis
Level:    Medium
Fun Fact suggested by:   Dominic Mazzoni
Suggestions? Use this form.
Click to rate this Fun Fact...
    *   Awesome! I totally dig it!
    *   Fun enough to tell a friend!
    *   Mildly interesting
    *   Not really noteworthy
and see the most popular Facts!
New: get the MathFeed iPhone App!

Brings you news and views on math:
showcasing its power, beauty, and humanity

Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College!