Math Fun Facts!
hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed   or follow us on Twitter.
Get a random Fun Fact!
or
No subject limitations
Search only in selected subjects
    Algebra
    Calculus or Analysis
    Combinatorics
    Geometry
    Number Theory
    Probability
    Topology
    Other subjects
  Select Difficulty  
Enter keywords 

  The Math Fun Facts App!
 
  List All : List Recent : List Popular
  About Math Fun Facts / How to Use
  Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Fun Fact at the Advanced level:

Computability of Real Numbers

We can write a computer program that will successively print out the digits of the decimal expansion of Pi. We can also write one that will list the digits of the decimal expansion of the square root of 2. Similarly, there are computer programs that will compute the square roots of integers, ones that will compute cube roots, etc. In fact, for the irrational numbers that you encounter in your day-to-day life, there are computer programs that will compute them as long as their defining characteristics can be "described" in some reasonable way.

So, for every given irrational number, does there always exist a computer program that will list the digits of that number?

Surprisingly, no! There are some irrational numbers whose decimal expansion cannot be computed!

Presentation Suggestions:
This is a good Fun Fact to do after the Fun Facts How Many Rationals? and Cantor Diagonalization, which give background on countable and uncountable sets.

The Math Behind the Fact:
The proof of this fact is actually quite easy if you know the difference between countable and uncountable sets.

We first show that the set of all possible computer programs is a countable set. Why? Every computer program is a finite string of a finite set of symbols. So the set of all computer programs of length N is finite. The union over all N of such sets is the set of all computer programs, and it is therefore countable, since it can be "listed" as the countable union of finite sets.

However, the set of all irrational numbers is uncountable, so there must be some irrational number whose decimal expansion is not computable! In fact, since only countably many irrational numbers can be computed, "most" irrational numbers are not computable!

This fact comes as a shock to students and gives a great demonstration of the importance of understanding the difference between countable and uncountable sets.

How to Cite this Page:
Su, Francis E., et al. "Computability of Real Numbers." Math Fun Facts. <http://www.math.hmc.edu/funfacts>.

Keywords:    computer science, logic
Subjects:    other
Level:    Advanced
Fun Fact suggested by:   Francis Su
Suggestions? Use this form.
4.46
 
current
rating
Click to rate this Fun Fact...
    *   Awesome! I totally dig it!
    *   Fun enough to tell a friend!
    *   Mildly interesting
    *   Not really noteworthy
and see the most popular Facts!
New: get the MathFeed iPhone App!

Brings you news and views on math:
showcasing its power, beauty, and humanity

Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College!