Math Fun Facts!
hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed   or follow us on Twitter.
Get a random Fun Fact!
or
No subject limitations
Search only in selected subjects
    Algebra
    Calculus or Analysis
    Combinatorics
    Geometry
    Number Theory
    Probability
    Topology
    Other subjects
  Select Difficulty  
Enter keywords 

  The Math Fun Facts App!
 
  List All : List Recent : List Popular
  About Math Fun Facts / How to Use
  Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Random Fun Fact, at the Medium level:

Square Root of Two is Irrational

An irrational number is a number that cannot be expressed as a fraction. But are there any irrational numbers?

It was known to the ancient Greeks that there were lengths that could not be expressed as a fraction. For instance, they could show that a right triangle whose side lengths (adjacent to the right angle) are both 1 has a hypotenuse whose length is not a fraction. By the Pythagorean theorem this length is Sqrt[2] (the square root of 2). We shall show Sqrt[2] is irrational.

Suppose, to the contrary, that Sqrt[2] were rational. Then Sqrt[2]=m/n for some integers m, n in lowest terms, i.e., m and n have no common factors. Then 2=m2/n2, which implies that m2=2n2. Hence m2 is even, which implies that m is even. Then m=2k for some integer k.

So 2=(2k)2/n2, but then 2n2 = 4k2, or n2 = 2k2. So n2 is even. But this means that n must be even, because the square of an odd number cannot be even.

We have just showed that both m and n are even, which contradicts the fact that m, n are in lowest terms. Thus our original assumption (that Sqrt[2] is rational) is false, so the Sqrt[2] must be irrational.

Presentation Suggestions:
This is a classic proof by contradiction.

The Math Behind the Fact:
You may wish to try to prove that Sqrt[3] is irrational using a similar technique. It is also instructive to see why this proof fails for Sqrt[4] (which is clearly rational). The above proof fails for Sqrt[2] because at the point in the proof where we deduce that m2 is divisible by 4, we cannot conclude that m is divisible by 4.

How to Cite this Page:
Su, Francis E., et al. "Square Root of Two is Irrational." Math Fun Facts. <http://www.math.hmc.edu/funfacts>.

The Link for this Fun Fact: is directly accessible here.

Keywords:    square root of 2
Subjects:    number theory
Level:    Medium
Fun Fact suggested by:   Francis Su
Suggestions? Use this form.
4.37
 
current
rating
Click to rate this Fun Fact...
    *   Awesome! I totally dig it!
    *   Fun enough to tell a friend!
    *   Mildly interesting
    *   Not really noteworthy
and see the most popular Facts!
Get the Math Fun Facts
iPhone App!

Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College!