Department of Mathematics Harvey Mudd College 


A Combinatorial Analogue of the PoincaréBirkhoff Fixed Point Theorem 

Results from combinatorial topology have shown that certain combinatorial lemmas are equivalent to certain topologocal fixed point theorems. For example, Sperner's lemma about labelings of triangulated simplices is equivalent to the fixed point theorem of Brouwer. Moreover, since Sperner's lemma has a constructive proof, its equivalence to the Brouwer fixed point theorem provides a constructive method for actually finding the fixed points rather than just stating their existence. The goal of this research project is to develop a combinatorial analogue for the PoincaréBirkhoff fixed point theorem. 
