Blurring Invariants

Tyler Seacrest

Harvey Mudd College

April 30, 2006

Advisor: Professor Weiqing Gu

Senior Thesis
How can we tell which picture is the blurred version of Professor Gu?
One way is to find a function h that is \textit{invariant} under blurring.
Infinite, One-dimensional, Continuous, Black and White Images

The images we will be considering are continuous images. In particular, we will consider functions $f_0 : \mathbb{R} \rightarrow [0, 1]$.

- Functions like this can be seen as coloring the real line.
- $f_0(x) = 1$ means that x is colored white, while $f_0(x) = 0$ means x is colored black. If $f_0(x)$ is something in between, then it will be colored the corresponding shade of grey.
So things will always converge, we insist $f_0(x)$ is small at ∞ and $-\infty$. Specifically,

$$\int_{-\infty}^{\infty} e^{sx} f_0(x) dx$$

converges for some $s > 0$.
The Gaussian function (the bell shaped curve) with parameter t is given by

$$g_t(x) = \frac{1}{\sqrt{2\pi t}} e^{\frac{-x^2}{2t}}$$
Let f_t denote the image that is the Gaussian blur of image f_0 with parameter t, where

$$f_t(x) = \int_{-\infty}^{\infty} g_t(s-x)f_0(s)ds$$

Notice $f_t(x)$ just the convolution of f_0 and g_t, usually denoted $f_0 * g_t$.

What if we apply a Gaussian blur to a Gaussian blur? Amazingly, we get another Gaussian blur. In fact

$$(f_0 * g_{t_0}) * g_{t_1} = f_0 * g_{t_0+t_1}$$

This means that the operation of Gaussian blurring is a semigroup.
Let h be a function from infinite, one-dimensional, continuous, black and white images to the reals. We say that h is an invariant under Gaussian blurring if

$$h(f_t) = \text{a constant for all } t$$

Which is equivalent to saying

$$\frac{d}{dt} h(f_t) = 0.$$

We say that h is functionally independent from h' if there is no function $u : \mathbb{R} \to \mathbb{R}$ such that

$$u(h(f)) = h'(f)$$

for all f.

Using Intuition

Blurring does not lighten or darken an image. Measuring the total lightness or darkness is accomplished by

\[h_0(f) = \int_{-\infty}^{\infty} f(x) \, dx. \]

Sure enough, \(h_0 \) is an invariant!

\[
\begin{align*}
 h_0 \left(\int_{-\infty}^{\infty} g_t(s-x)f_0(s) \, ds \right) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_t(s-x)f_0(s) \, ds \, dx \\
 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_t(s-x)f_0(s) \, dx \, ds \\
 &= \int_{-\infty}^{\infty} f_0(s) \int_{-\infty}^{\infty} g_t(s-x) \, dx \, ds \\
 &= \int_{-\infty}^{\infty} f_0(s)(1) \, ds \\
 &= \text{a constant.}
\end{align*}
\]
Blurring does not seem to move the “center of mass” of the image. Measuring this is accomplished by

$$ h_1(f) = \int_{-\infty}^{\infty} xf(x) \, dx. $$

Sure enough, h_1 is an invariant too!
Define

\[h_i(f) = \int_{-\infty}^{\infty} x^i f(x) \, dx. \]

Maybe \(h_i(f) \) is invariant for all \(i \)?
Define

\[h_i(f) = \int_{-\infty}^{\infty} x^i f(x) dx. \]

Maybe \(h_i(f) \) is invariant for all \(i \)? **Nope ...**
Generalizing

It fails for the case $h_2(f)$. After some computation, we get

\[
h_2(f_t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 g_t(s - x) f_0(s) ds dx
\]

\[
= \int_{-\infty}^{\infty} s^2 f_0(s) ds + t \int_{-\infty}^{\infty} f_0(s) ds
\]

\[
= h_2(f_0) + th_0(f_0)
\]
Generalizing

It fails for the case $h_2(f)$. After some computation, we get

$$h_2(f_t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 g_t(s - x)f_0(s) dsdx$$

$$= \int_{-\infty}^{\infty} s^2 f_0(s) ds + t \int_{-\infty}^{\infty} f_0(s) ds$$

$$= h_2(f_0) + th_0(f_0)$$

It depends on t...
Table of values for $h_i(f_t)$:

<table>
<thead>
<tr>
<th>$h_0(f_t)$</th>
<th>$h_0(f_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(f_t)$</td>
<td>$h_1(f_0)$</td>
</tr>
<tr>
<td>$h_2(f_t)$</td>
<td>$h_2(f_0) + th_0(f_0)$</td>
</tr>
<tr>
<td>$h_3(f_t)$</td>
<td>$h_3(f_0) + 3th_1(f_0)$</td>
</tr>
<tr>
<td>$h_4(f_t)$</td>
<td>$h_4(f_0) + 6th_2(f_0) + 3t^2h_0(f_0)$</td>
</tr>
<tr>
<td>$h_5(f_t)$</td>
<td>$h_5(f_0) + 10th_3(f_0) + 15t^2h_1(f_0)$</td>
</tr>
<tr>
<td>$h_6(f_t)$</td>
<td>$h_6(f_0) + 15th_4(f_0) + 45t^2h_2(f_0) + 15t^3h_0(f_0)$</td>
</tr>
<tr>
<td>$h_7(f_t)$</td>
<td>$h_7(f_0) + 21th_5(f_0) + 105t^2h_3(f_0) + 105t^3h_1(f_0)$</td>
</tr>
</tbody>
</table>
Generalizing

Table of values for $h_i(f_t)$:

<table>
<thead>
<tr>
<th>$h_0(f_t)$</th>
<th>$h_0(f_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(f_t)$</td>
<td>$h_1(f_0)$</td>
</tr>
<tr>
<td>$h_2(f_t)$</td>
<td>$h_2(f_0) + th_0(f_0)$</td>
</tr>
<tr>
<td>$h_3(f_t)$</td>
<td>$h_3(f_0) + 3th_1(f_0)$</td>
</tr>
<tr>
<td>$h_4(f_t)$</td>
<td>$h_4(f_0) + 6th_2(f_0) + 3t^2h_0(f_0)$</td>
</tr>
<tr>
<td>$h_5(f_t)$</td>
<td>$h_5(f_0) + 10th_3(f_0) + 15t^2h_1(f_0)$</td>
</tr>
<tr>
<td>$h_6(f_t)$</td>
<td>$h_6(f_0) + 15th_4(f_0) + 45t^2h_2(f_0) + 15t^3h_0(f_0)$</td>
</tr>
<tr>
<td>$h_7(f_t)$</td>
<td>$h_7(f_0) + 21th_5(f_0) + 105t^2h_3(f_0) + 105t^3h_1(f_0)$</td>
</tr>
</tbody>
</table>

Perhaps we can take linear combinations of these to come up with more invariants?
Perhaps we can take linear combinations of these to come up with more invariants?

Yep — look at $h_0(f)h_3(f) - 3h_1(f)h_2(f)$.

The t terms cancel, and we’re left with constant terms.
Table of values for $h_i(f_t)$:

<table>
<thead>
<tr>
<th>$h_0(f_t)$</th>
<th>$h_0(f_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(f_t)$</td>
<td>$h_1(f_0)$</td>
</tr>
<tr>
<td>$h_2(f_t)$</td>
<td>$h_2(f_0) + \text{th}_0(f_0)$</td>
</tr>
<tr>
<td>$h_3(f_t)$</td>
<td>$h_3(f_0) + 3th_1(f_0)$</td>
</tr>
<tr>
<td>$h_4(f_t)$</td>
<td>$h_4(f_0) + 6th_2(f_0) + 3t^2h_0(f_0)$</td>
</tr>
<tr>
<td>$h_5(f_t)$</td>
<td>$h_5(f_0) + 10th_3(f_0) + 15t^2h_1(f_0)$</td>
</tr>
<tr>
<td>$h_6(f_t)$</td>
<td>$h_6(f_0) + 15th_4(f_0) + 45t^2h_2(f_0) + 15t^3h_0(f_0)$</td>
</tr>
<tr>
<td>$h_7(f_t)$</td>
<td>$h_7(f_0) + 21th_5(f_0) + 105t^2h_3(f_0) + 105t^3h_1(f_0)$</td>
</tr>
</tbody>
</table>

Some more invariants:

\[h_0 h_4 - 3[h_2]^2 \]

\[3h_1 h_5 - 5[h_3]^2 \]

\[[h_0]^2 h_6 - 15h_0 h_2 h_4 + 30[h_2]^3 \]
Conjecture There are an infinite number of functionally independent invariants under Gaussian blurring of an infinite continuous one-dimensional image of the form

\[\alpha(h_0, h_1, \ldots, h_k) \]

for some \(k \) and some polynomial \(\alpha : \mathbb{R}^k \to \mathbb{R} \).
Conjecture There are an infinite number of functionally independent invariants under Gaussian blurring of an infinite continuous one-dimensional image of the form

\[\alpha(h_0, h_1, \ldots, h_k) \]

for some \(k \) and some polynomial \(\alpha : \mathbb{R}^k \to \mathbb{R} \).

A proof might proceed in these two parts:
A Conjecture

Conjecture There are an infinite number of functionally independent invariants under Gaussian blurring of an infinite continuous one-dimensional image of the form

$$\alpha(h_0, h_1, \ldots, h_k)$$

for some k and some polynomial $\alpha : \mathbb{R}^k \to \mathbb{R}$.

A proof might proceed in these two parts:

- Prove that there exist invariants of the form $\alpha(h_0, \ldots, h_k)$ for infinitely many k. Proving this probably will involve induction, using invariants for lower values of k to find invariants for higher values of k.
A Conjecture

Conjecture There are an infinite number of functionally independent invariants under Gaussian blurring of an infinite continuous one-dimensional image of the form

\[\alpha(h_0, h_1, \ldots, h_k) \]

for some \(k \) and some polynomial \(\alpha : \mathbb{R}^k \to \mathbb{R} \).

A proof might proceed in these two parts:

- Prove that there exist invariants of the form \(\alpha(h_0, \ldots, h_k) \) for infinitely many \(k \). Proving this probably will involve induction, using invariants for lower values of \(k \) to find invariants for higher values of \(k \).
- Prove that \(\alpha(h_0, \ldots, h_{k_1}) \) is functionally independent from \(\alpha(h_0, \ldots, h_{k_2}) \) for \(k_2 > k_1 \). This involves finding pairs of images \(f \) and \(f' \) such that the first invariant cannot distinguish between them, but the second can.
Future Work

• Prove the conjecture!

• Explore invariants not in the form $\alpha(h_0, \ldots, h_k)$. Are there any? Can they be completely characterized?

• Extend ideas to other group-like transformations on continuous images
I’d like to thank Professor Gu for all her wonderful ideas and contributions to my thesis.

Bibliography