Introduction

Viscoelastic fluids are a broad class of fluids that exhibit both viscous and elastic properties. Fluid elasticity is the measure of a fluid’s tendency to return to its original shape in the absence of external forces, and fluid viscosity is the measure of its resistance to flow. Common examples of viscoelastic fluids include bio fluids, gels, egg white, and corn starch in water. Unlike Newtonian fluids, which have a constant viscosity, viscoelastic fluids have a viscosity that depends on the amount of stress being applied to the fluid. Our model is a generalization of incompressible fluid flow in one dimension in that it accounts for variations in fluid stress:

\[u_t + uu_x = \sigma, \]

where \(u \) denotes fluid velocity and \(\sigma \) denotes fluid stress. To derive a governing equation for stress, we assume that each fluid particle can be approximated as a Maxwell element — a spring and damper connected in series. The variable \(t \) is used to denote strain.

We study a non-dimensionalized version of the (1–2) system with asymptotically constant boundary conditions. That is,

\[u_t + uu_x = \sigma, \quad \sigma + uu_x = (\sigma + A)u_x - \sigma, \]

subject to the same boundary conditions as before. As \(\varepsilon \to 0 \), the solutions of the viscous PDE system look similar to those of the original. Traveling wave solutions to the viscous system must satisfy

\[\sigma' = S' = (S + A)(L^2 - 25 - 1 - 2\varepsilon S) \]

Regularization

To better understand the behavior of the PDE system, when \(A \in (0, 1) \), we add a viscous term. This new term prevents the formation of shocks. The viscous PDE system is

\[u_t + uu_x = \sigma + \varepsilon u_x, \quad \sigma + uu_x = (\sigma + A)u_x - \sigma, \]

subject to the same boundary conditions as before. As \(\varepsilon \to 0 \), the solutions of the viscous PDE system look similar to those of the original. Traveling wave solutions to the viscous system must satisfy

\[\frac{\sigma'}{\sigma} = \frac{S'}{S} = \frac{(S + A)(L^2 - 25 - 1) - 2\varepsilon S}{2U} \]

Computer Simulations

To assist with the analysis of our PDE model, we developed a graphical user interface program, called VISCO, that simulates solutions. The numerical algorithm used by VISCO is a fractional-step Lax-Wendroff method [1]. We approximate a small step forward in time using a Taylor approximation.

\[u(x, t_0 + \Delta t) = u(x, t_0) + \Delta u(x, t_0) = \frac{\Delta t^2}{2!} u_{xx}(x, t_0) + O(\Delta t^3) \]

\[\sigma(x, t_0 + \Delta t) = \sigma(x, t_0) + \Delta \sigma(x, t_0) = \frac{\Delta t^2}{2} \sigma_{xx}(x, t_0) + O(\Delta t^3) \]

Acknowledgments

I would like to thank my thesis advisor, Darryl Yong, for his positive attitude, patience, and devotion to my personal development through this research experience. Professor Jon Jacobsen, for introducing me to this project and guiding my research in the summer of 2006. Bob Guy, for helping me to understand many difficult aspects of this thesis project. The Baker Foundation, for generously funding my work.

References

For Further Information

- Email: vcamacho@hmc.edu
- Electronic copy of poster: http://math.hmc.edu/~vcamacho/thesis/