Continued Fractions: A New Form

D. Lee Wiyninger

Introduction

Continued fractions are a way to approximate real numbers as tuples of integers. For instance, Figure 1 shows the most common form of continued fractions, in which each successive \(a_n \) except the first, is a positive integer (Khinchin, 1992).

\[
a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}
\]

Figure 1: Ordinary continued fractions

In certain scenarios, however, a different approximation might be more useful. One such approximation is the basis for this thesis. The new approximation takes the form described in Figure 2. Here, each successive \(t_i \) is a positive integer with \(t_i \geq 2 \), and \(t_i > t_{i-1} \).

\[
1 + \frac{(-1)^{t_i}}{1 + \frac{1}{t_i + \frac{1}{t_{i-1} + \ddots}}}
\]

Figure 2: The new continued fractions

These continued fractions approximate real numbers between 1 and 2. A algorithm for generating these fractions was described by Pippenger (Pippenger, 1979).

Materials and Methods

- The expression in Figure 3 is used to represent the expression in Figure 2.
- The number \(n \) in Figure 2 and Figure 3 is defined to be the order of the continued fraction.
- Some largely unsuccessful use of Wolfram Mathematica came near the end of the thesis.

\[
(t_1, t_2, \ldots, t_n)
\]

Figure 3: A more concise way of representing the new fractions

Results

From a tuple to a rational

Usually, analyses of continued fractions focus on the process of starting with a real number and finding the relevant continued fraction approximation. However, it is also useful to move the other way; that is, if we take a tuple of strictly increasing positive integers, we wish to know what rational number is represented by the corresponding continued fraction. The rational number generated by the integers \(t_1, t_2, \ldots, t_n \) is given in Figure 4.

\[
\frac{\prod_{k=1}^{n} a_k}{\sum_{i=0}^{n-1} (-1)^{i+n} \prod_{k=0}^{i} a_k}
\]

Figure 4: The rational number generated by a given tuple

This form proves more useful in analyzing the average- and worst-case errors of approximation.

Worst-case approximation

Define the error of order \(n \) for a given real number \(x \) to be the difference between \(x \) and the continued fraction of order \(n \) generated by the algorithm described by Pippenger. Then, we can define the worst-case approximation of order \(n \) to be the real number for which the error of order \(n \) is maximized.

The worst-case approximation of order \(n \) was found to be the number that bisects the interval between \((2, 3, \ldots, n, n + 1)\) and \((2, 3, \ldots, n, n + 2)\). As \(n \to \infty \), these bounds converge to \(\frac{\sqrt{5} - 1}{2} \).

Average-case approximation

If we take the reals from 1 to 2 from a uniform distribution, we can define the average-case approximation of order \(n \) to be the expected value of the error of order \(n \) of a random real number. When \(n = 1 \), the average error is equal to \(\frac{\sqrt{5} - 1}{2} \); see Figure 5.

\[
1 \sum_{i=2}^{n} \left(\prod_{k=2}^{i} a_k \right) = \frac{n^2 - 9}{12}
\]

Figure 5: The average error of order 1

When \(n = 2 \), the average error is more difficult to calculate. It is equal to the value of the summation shown in Figure 6; however, I have been unable to find a closed form.

\[
1 \sum_{i=2}^{n} \left(\prod_{k=2}^{i} a_k \right) \left(\prod_{k=2}^{i} a_k \right) = \frac{n^2 - 9}{12}
\]

Figure 6: The average error of order 2

Asymptotic behavior

In the absence of a general formula for the average-case error of a given order \(n \), it became necessary to examine the asymptotic behavior of the average-case error; that is, I looked for the behavior of the average-case error as \(n \) becomes arbitrarily large.

I found an upper bound on the complexity of the approximation; the average-case error of the new approximation is \(O(3^{-n}(n!)^{-3}) \).

Note that this is not a strict upper bound.

Conclusions

This thesis has described a number of properties of a newer form of continued fractions; this, hopefully, will allow the new form to be used more often more successfully. It should be noted that there are a number of important properties that are still unknown; looking only at those that were hinted at by this thesis, we see that there is no general formula for the average-case approximation of order \(n \), nor is there any kind of lower bound on the asymptotic behavior of the average-case error. Future work would attempt to answer these questions.

References

Acknowledgments

I would like to express my gratitude and appreciation, first and foremost, to my advisor, Prof. Nicholas Pippenger, for his support and guidance as I worked through this project. I also would like to thank Prof. Michael Orrison and Claire M. Connelly for their role in bringing my thesis to fruition. Finally, I would like to acknowledge the countless people who helped me get to where I am today.

For Further Information

- I can be reached at dwiyninger@hmc.edu.
- For more information, see my thesis website at http://www.math.hmc.edu/~dwiyninger/
- The full report and a PDF of this poster can also be found at the above website.