Skip to Content

Elizabeth (Lizard) Reiland

Picture of Elizabeth (Lizard) Reiland.

Thesis

Combinatorial Interpretations of Fibonomial Identities

Advisor
Arthur T. Benjamin
Second Reader(s)
Kimberly Kindred

Abstract

The Fibonomial numbers are defined by \[ \begin{bmatrix}n \\ k \end{bmatrix} = \frac{\prod_{i=n-k+1} ^{n} F_i}{\prod_{j=1}^{k} F_j} \] where $F_i$ is the $i$th Fibonacci number, defined by the recurrence $F_n=F_{n-1}+F_{n-2}$ with initial conditions $F_0=0,F_1=1$. In the past year, Sagan and Savage have derived a combinatorial interpretation for these Fibonomial numbers, an interpretation that relies upon tilings of a partition and its complement in a given grid.

In this thesis, I investigate previously proven theorems for the Fibonomial numbers and attempt to reinterpret and reprove them in light of this new combinatorial description. I also present combinatorial proofs for some identities I did not find elsewhere in my research and begin the process of creating a general mapping between the two different Fibonomial interpretations. Finally, I provide a discussion of potential directions for future work in this area.

Proposal

Combinatorial Interpretations of Fibonomial Identities

Additional Materials

Poster