

Math 197: Senior Thesis

Approval Ratios of Double-Interval Societies

Jacob Scott

Introduction

Helly’s theorem states that given any \(n \) convex sets in \(\mathbb{R}^d (d < n) \), if every \(d + 1 \) of them have nonempty intersections, then all \(n \) sets must have nonempty intersection:

\[\text{Theorem 1. (Helly’s Theorem, 1913)} \]

If \(\{S_i\} \) is a collection of convex sets in \(\mathbb{R}^d \), \(1 \leq i \leq n \), and the intersection of every \(d + 1 \) of the sets in \(\{S_i\} \) is nonempty, then \(\bigcap_{i=1}^{d+1} S_i \neq \emptyset \).

If each convex set represents an interval of political positions on a spectrum that a voter approves of, then Helly’s theorem establishes a necessary and sufficient condition to guarantee that some political position has an approval ratio of 1.

- Define a society to be a political spectrum together with a collection of voters’ approval sets; the size of a society is the number of such sets.
- Call a society \(2 \)-intersecting if all its approval sets pairwise intersect.
- Define the **agreement number** and **approval ratio** of a society to be the maximum number and proportion, respectively, of mutually intersecting approval sets.

An example society is shown in Figure 1. Sets are shown separated vertically for visibility.

Previous Work

- Berg et al. (2010): Suppose approval sets are intervals in \(\mathbb{R}^1 \) and out of every collection of \(m \) approval sets, at least \(k \) mutually intersect. Then the approval ratio is at least \(\frac{k}{m} \).
- Hardin (2010): Now suppose approval sets are now arcs on a circle, and again that out of every collection of \(m \) approval sets, at least \(k \) mutually intersect. Then the approval ratio is at least \(\frac{k}{m} \).

What if approval sets were not just single intervals?

Main Question

- Call a society \(S \) double-\(i \)-interval if each approval set in \(S \) is the union of two closed intervals in \(\mathbb{R}^1 \).

Double-n Strings

K. Nyman and F. Su conjectured that approval ratios of double-\(i \)-intersecting societies are always \(\geq \frac{1}{3} \) and are achieved when the intervals of the approval sets are equally spaced and of the same length, as in Figure 2. This suggests the following definitions.

- Define a double-\(n \) string as a string of length \(2n \) that contains two occurrences of \(n \) distinct symbols.
- Let the **double-\(n \) string** be the number of such sets.
- Let \(\delta(n) \) be the maximum distance between symbols in a double-\(n \) string.

For example, the double-5 string ABCDEBECAD has approval number 3:

\[\text{Figure 1: A double-\(i \)-intersecting society of size 4 with approval number 3:} B, C', and D mutually intersect, for example. Each voter has 2 approval sets, labeled by unprimed/primed versions, unprimed on the left. \]

Double-n Strings

\[\text{Double-n Strings} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A')</td>
<td>(B')</td>
<td>(C')</td>
<td>(D')</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A double-\(n \) string of diameter \(d \) corresponds to a double-\(i \)-intersecting society \(S \) of approval ratio \(\frac{1}{2} \).

Theorem 2. (Klawe, 2008)

1. For any double-\(n \) string \(w, n \leq 3d(w) - 1 \).
2. Asymptotically, \(\frac{24}{69} \leq \frac{\delta(n)}{n} \leq \frac{5}{13} \).

Unfortunately, one of our main findings is that double-\(n \) strings do not always have the lowest approval ratios. While Klawe’s results show no double-8 string could have approval number less than 4, we demonstrate in Figure 3 an example society of size 8 with approval number 3.

\[\text{Figure 2: A society of approval number 3 corresponding to the double-5 string ABCDEBECAD.} \]

\[\text{Figure 3: A society of size 8 with approval number 3.} \]

Combinatorial Approach

For an interval \(X \) of an approval set in society \(S \) of size \(n \), define \(L(X), R(X), C(X), \) and \(B(X) \) to be the number of other intervals intersecting \(X \) that contain just \(X \)’s left endpoint, just \(X \)’s right endpoint, neither of \(X \)’s endpoints, and both of \(X \)’s endpoints respectively. For example, in Figure 1, \(L(A') = 1, R(A') = 2, C(A') = 0, \) and \(B(A') = 1 \).

- If the approval number of \(S \) is \(m \), \(L(A) + B(A) \) is bounded by \(M - 1 \).

\[\text{Theorem 3. (Scott, 2010)} \]

1. Asymptotically, \(\frac{M}{n} \geq 2 - \sqrt{3} \approx 0.268 \).

Further Study

There remains a significant gap between the best theoretical lower and upper bounds on approval ratios. Theorem 3 provides the first lower bound of the asymptotic approval ratio, which falls short of the hypothesized asymptotic ratio of \(\frac{1}{2} \).

We wrote a program that repeatedly permutes interval endpoints; the data suggest that, with high probability, the approval ratio is asymptotically \(\frac{1}{2} \). More work is needed to tighten the lower bound on approval ratios of double-\(i \)-intersecting societies.

Acknowledgments

I’d like to thank my advisor, Professor Francis Su, and Harvey Mudd College for their invaluable support.

References

- Klawe, M., “Double Distance”, Notes from Presentation at Oakland University, MI.

Advisor: Francis Su
Reader: Nicholas Pippenger
Copyright © 2011 Jacob Scott