Mathematics
Harvey Mudd College

Extending List Colorings of Planar Graphs
Sarah Loeb

Background

Let \(G \) be a graph with vertices \(\{v_1, \ldots, v_n\} \). A list assignment is a family of sets, \(\Phi = \{\Phi(v_i) : 1 \leq i \leq n\} \), where each \(\Phi(v_i) \) is a set of positive integers. A list coloring is a map \(\varphi : V(G) \rightarrow \bigcup_i \Phi(v_i) \) so that \(\varphi(v_i) \in \Phi(v_i) \) for all \(v_i \in V(G) \). A proper list coloring is one with \(\varphi(v_i) \neq \varphi(v_j) \) for \(v_i, v_j \in E(G) \). A graph \(G \) is \(k \)-choosable if there is a proper list coloring of \(G \) for every list assignment where \(|\Phi(v_i)| = k \) for all \(i \). The minimum \(k \) for which this condition holds is called the list colorability or choosability, denoted \(\chi_l(G) \).

Small Face

Theorem 3. (Böhme, Mohar and Stiebitz) Let \(G \) be a plane graph with outer face \(C \) of length \(p \leq 6 \). Assume that \(\Phi \) is a list assignment for \(G = (V, E) \) and \(S \subseteq V \) so that \(\Phi(v_i) = 1 \) for all \(v \in S \). Then if there is a \(\Phi \)-coloring of \(G \), we say that this coloring extends the coloring of \(S \).

Small Separating Cycle

Theorem 5. (Loeb) Suppose that \(G \) is a plane graph. Suppose that \(G \) is a plane graph. Suppose that \(G \) is a plane graph. Suppose that \(G \) is a plane graph. Suppose that \(G \) is a plane graph. Suppose that \(G \) is a plane graph. Suppose that \(G \) is a plane graph.

Distance

Theorem 2. Let \(G \) be a planar graph, \(W \subseteq V(G) \) so that \(d(u, v) \geq 3 \) for all \(u, v \in W \). Then a coloring of \(W \) can be extended to a 6-list-coloring of \(G \).

References

For Further Information

- Email: sloeb@hmc.edu.