Introduction

Definition 1. A cap set of width \(n \) is a subset \(S \subset Z^n \) such that if \(x, y, z \in S \) sum to 0, then \(x = y = z \). Let \(a_n \) denote the size of the largest cap set of width \(n \).

It is natural to ask how quickly \(a_n \) grows. Another reason for interest in its growth is that it is related to the existence of efficient algorithms for matrix multiplication [CKSU05, ASU12]. The best known upper and lower bounds are respectively \(O(3^n/\sqrt{n}) \) and \(2.2174^n \). The upper bound is due to Meshulam [Mes95, Rot53]. [Ede04] proves the lower bound.

A New Approach

In this section, we describe a new approach to bound the union of large subspaces of \(Z^n \). The union of large subspaces of \(Z^n \) should be viewed as a feature that is different from the exponential function describing the size of the best known construction of a related combinatorial object called a strongly resolution of a solitaire puzzle [CKSU05].

Conjecture 1. Let \(S \subset Z^n \) where \(S \subset \omega(3^n/n) \) and \(S \) is the union of \(S \)\!/\!n disjoint bases for \(Z^n \).

If \(S \) is conjectured to be true, we immediately obtain an upper bound on the size of the cap set. The conjecture is by way of the stronger one.

Conjecture 2. Let \(S \subset Z^n \) where \(S \subset \omega(3^n/n) \) and \(S \) is the union of \(S \)\!/\!n disjoint bases for \(Z^n \).

Then, \(|S| = 3^n - |S| \).

Conjecture 3. Let \(S \subset Z^n \) where \(S \subset \omega(3^n/n) \) and \(S \) contains a basis for \(Z^n \).

Then, \(|S| > 3^n - |S| \).

It may be worth investigating what other features of cap sets—aside from the fact that they have a lot of disjoint bases—might be useful in obtaining bounds.

Some Additional Conjectures

[ASU12] showed that constructing large sunflower free sets implies the existence of large cap sets. Briefly, Definition 3. A sunflower free set of width \(n \) is a subset \(S \) of \(F^n \) such that for any \(x, y, z \in S \) (not all equal), there is an \(i \) such that exactly two of \(x_i, y_i, z_i \) are equal to 1. Let \(b_n \) denote the size of the largest sunflower free set of width \(n \).

Theorem 2. [ASU12]. If \(\lim_{n \to \infty} (b_n)^{1/n} = 2 \) then \(\lim_{n \to \infty} (c_n)^{1/n} = 3 \).

Theorem 3. \(\lim_{n \to \infty} (b_n)^{1/n} = 2 \) if \(\lim_{n \to \infty} (c_n)^{1/n} = 3 \).

Table 1: Values of \(a_n, b_n, c_n \) for small \(n \).

Table 1: Values of \(a_n, b_n, c_n \) for small \(n \).

\(a_n \) has the interesting pattern in the table that for even \(n \), \(a_n = c_{n+1} \). We conjecture this holds always.

Conjecture 4. For all even \(n \), \(a_n = c_{n+1} \).

Consider the next theorem that is different from Conjecture 1.

Conjecture 5. For all even \(n \), \(a_n = c_{n+1} \).

References

For Further Information

• Email jpeebles@hmc.edu.

• See http://www.math.hmc.edu/seniorthesis/archives/2013/