Skip to Content

R. Amzi Jeffs

Picture of R. Amzi Jeffs.


Convexity of Neural Codes

Mohamed Omar
Second Reader(s)
Nora Youngs


An important task in neuroscience is stimulus reconstruction: given activity in the brain, what stimulus could have caused it? We build on previous literature which uses neural codes to approach this problem mathematically. A neural code is a collection of binary vectors that record concurrent firing of neurons in the brain. We consider neural codes arising from place cells, which are neurons that track an animal's position in space. We examine algebraic objects associated to neural codes, and completely characterize a certain class of maps between these objects. Furthermore, we show that such maps have natural geometric implications related to the receptive fields of place cells. Lastly we describe several purely geometric results related to neural codes.

Additional Materials