Skip to Content

Dylan Baker

Picture of Dylan Baker.

Thesis

The Document Similarity Network: A Novel Technique for Visualizing Relationships in Text Corpora

Advisor
Talithia Williams
Second Reader(s)
Tanya Srebotnjak

Abstract

With the abundance of written information available online, it is useful to be able to automatically synthesize and extract meaningful information from text corpora. We present a unique method for visualizing relationships between documents in a text corpus. By using Latent Dirichlet Allocation to extract topics from the corpus, we create a graph whose nodes represent individual documents and whose edge weights indicate the distance between topic distributions in documents. These edge lengths are then scaled using multidimensional scaling techniques, such that more similar documents are clustered together. Applying this method to several datasets, we demonstrate that these graphs are useful in visually representing high-dimensional document clustering in topic-space.

Additional Materials

Poster