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LECTURE 1
What is a Partial Differential Equation?

1.1. Outline of Lecture

e What is a Partial Differential Equation?

e Classifying PDE’s: Order, Linear vs. Nonlinear
e Homogeneous PDE’s and Superposition

e The Transport Equation

1.2. What is a Partial Differential Equation?

You've probably all seen an ordinary differential equation (ODE); for
example the pendulum equation,
2

(1.1) %—I—%sin@:(),

describes the angle, ©, a pendulum makes with the vertical as a
function of time, t. Here g and L are constants (the acceleration due to
gravity and length of the pendulum respectively), ¢ is the independent
variable and © is the dependent variable. This is an ODE because
there is only one independent variable, here ¢ which represents time.

A partial differential equation (PDE) relates the partial derivatives
of a function of two or more independent variables together. For ex-
ample, Laplace’s equation for ®(x,y),

2o 7o
oz = Oy
1

(1.2) 0
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arises in many places in mathematics and physics. For simplicity, we
will use subscript notation for partial derivatives, so this equation can
also be written ®,, + ®,, = 0.

We say a function is a solution to a PDE if it satisfy the equation
and any side conditions given. Mathematicians are often interested in
if a solution exists and when it is unique.

Exercise 1. Show that ®; = z and ®, = 22 — y? are solutions to
Laplace’s equation (1.2). How can you combine them to create a new
solution?

Exercise 2. Show that

Z(z,y) = In (Sin(y))

sin(x)

is a solution to the minimal surface equation,
(13) (1 + Zj)sz - 2Z:JcZyZzy + (1 + Z:g)Zyy = O’

in the region 0 < x < 7, 0 < y < m. What happens on the boundary
of this region? Suppose we consider a constant multiple of Z(x,y) — is
it still a solution of the PDE?
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1.3. Classifying PDE’s: Order, Linear vs. Nonlin-
ear

When studying ODEs we classify them in an attempt to group simi-
lar equations which might share certain properties, such as methods of
solution. We classify PDE’s in a similar way. The order of the dif-
ferential equation is the highest partial derivative that appears in the
equation. So, for example Laplace’s Equation (1.2) is second-order.
Some other examples are the convection equation for u(z,t),

which is first-order. Here C' is the wave speed. The minimal surface
equation,

(1.5) (1+ Z)) Zoo — 2202y Zony + (1 + 22) Zyy = O,

describes an area minimizing surface, Z(z,y), and is second-order. Fi-
nally, the Korteweg-deVries equation (sometimes called KdV),
(1.6) hy + 6hh, = hype

is a model of the amplitude of a wave, h(x,t), on the surface of a fluid
and is third-order.

We also define linear PDE’s as equations for which the dependent
variable (and its derivatives) appear in terms with degree at most one.
Anything else is called nonlinear. So, for example, the most general
first-order linear PDE for u(z,t) would be

(1.7) a(z, t)uy + b(x, t)u, + c(x, t)u = d(z,t),
where a, b, ¢ and d are known functions (called coefficients).

Exercise 3. Which of Laplace’s equation (1.2), the convection equa-
tion (1.4), the minimal surface equation (1.5) and the Korteweg-deVries
equation (1.6) are linear?

Exercise 4. Write down the most general constant coefficient linear
second-order equation for ®(x,y).
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1.4. Homogeneous PDE’s and Superposition

Linear equations can further be classified as homogeneous for which
the dependent variable (and it derivatives) appear in terms with degree
exactly one, and non-homogeneous which may contain terms which
only depend on the independent variable. So, the convection equation

us +cu, =0

is homogeneous, but its cousin, the general first-order linear PDE for
u(z,t), is non-homogeneous

a(z, t)uy + b(x, t)u, + c(x, t)u = d(z, ),

unless d(x,t) = 0.

Because partial differentiation is distributive, you can quickly con-
vince yourself that if two solutions, say wu; and wus, satisfy a linear
homogeneous PDE, that any linear combination of them

(1.8) U = C1U1 + Cols
is also a solution. So, for example, since
P, =22 —y? by, =2
both satisfy Laplace’s equation, ®,, + ®,, = 0, so does any linear
combination of them
D=0, + Py = 1 (2% — y?) + oz

This property is extremely useful for constructing solutions which sat-
isfy certain initial conditions and boundary conditions.
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1.5. The Transport Equation

One of the driving motivations for studying PDE’s is to describe the
physical world around us. We can use a flux argument to derive
equations describing the evolution of a density, which is just a fancy
word describing the concentration of something (mass in a region, heat
in a metal bar, traffic on a highway) per unit volume.

Consider a one-dimensional freeway and let p(z,t) be the density
of cars per unit length on the freeway.

Figure 1.1: Flux argument for cars on a freeway.
(draw your own figure).

Then the mass of cars in the region a < x < b is given by

(1.9) M:/ p(z.1) da

Now suppose we are measuring the flux, @), of cars into this region
measured in mass/unit time. It can written in terms of the number of
cars crossing into the region at x = a, called g(a), minus the number
of cars that flow out of the region at = b, called ¢(b),

(1.10) Q@ = q(a) —q(b).

Now, by conservation of mass, the rate of change of the mass be-
tween a and b is given by the flux into the region,

(1.11) % =Q.
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We can rewrite the flux by a clever application of the fundamental
theorem of calculus:

(112 Q=dlat)~albt) =~ (e = ~ [ g do.

We can now rewrite the conservation of mass equation as

dM d b b b
(1.13) WZE/pd:c:/ptdx:Q:—/ ¢ dx,

or, rearranging

b
(1.14) / pt + ¢, dx = 0.

Since this is true for every interval a < x < b, the integrand must
vanish identically. So

(1.15) pt + q. = 0.

Equations of this form are called transport equations or conserva-
tion laws — they are a very active area of study in PDE’s.

We can propose a simple model for the flux function ¢(z,t) — sup-
pose we assume the cars are all moving at a constant speed C. Then
we can argue that the flux is just equal to the product of the number
of cars time the speed they are moving at,

(1.16) q(z,t) = Cp(,1).
Substituting into the transport equation yields
(1.17) pr+Cpy =0,

which is just the convection equation. If we specify the initial distri-
bution of cars,

(1.18) plz,0) = F(x),

we can show fairly easily that the solution to the convection equation
with this initial condition is just

(1.19) p(x,t) = F(z — Ct),

corresponding to cars moving uniformly to the right.
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Physically, we just see the distribution of cars translating to the
right with a speed of C.

Figure 1.2: Solution to the convection equation.
(draw your own figure).

To verify this solution let £ = z — C't, and look for a solution F'(&).
Then, by the chain rule

Substituting p(z,t) = F(£) into the convection equation (1.17), we find
(1.21) pr+Cpy, =F,+CF, =—-CF¢+ CF; = 0.

Moreover, when t = 0, we find £ = x so that the initial condition
p(x,0) = F(z) is satisfied also.
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1.6. Challenge Problems for Lecture 1

Problem 1. Classify the follow differential equations as ODE’s or
PDE’s, linear or nonlinear, and determine their order. For the linear
equations, determine whether or not they are homogeneous.

(a) The diffusion equation for h(x,t):
hy = Dhyy
(b) The wave equation for w(z,t):
Wy = Wiy
(¢) The thin film equation for h(z,1):
hy = _(hhx:r:v):v
(d) The forced harmonic oscillator for y(¢):
Yu + w?y = F cos()
(e) The Poisson Equation for the electric potential ®(x,y, z):
Dyy + Py + .. = dp(a,y, 2)
where p(x,y, z) is a known charge density.
(f) Burger’s equation for h(x,t):
h; + hh, = vhy,

Problem 2. Suppose when deriving the convection equation, we as-
sumed the speed of the cars was given by gz for x > 0.
(a) Explain why the flux function now is given by ¢(z,t) = Szp
and the associated transport equation is given by

pi + (Bzp), = 0.
(b) Explain why
p(0,t) =0, p(x,0) =xe™ ™

correspond to a boundary condition of no flux of cars in from

the origin and an initial condition specifying the distribution

of cars at t = 0.
(c) Verify that

p(IL‘, t) _ me—(?ﬁt—l—me*m)

is a solution to both the transport equation given in (a) and
the initial and boundary conditions given in (b).
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Problem 3. Show that the helicoid
Z(x,y) = tan" (y/z)
satisfies the minimal surface equation,
(L4 Z)) 2o — 220 2y Zony + (1 + Z2) Zyy
MAPLE may be helpful with the algebra.

Problem 4. Show that the soliton
h(z,t) = 2a”sech (a(z — 40°t))
satisfies the the Korteweg-deVries equation,
hi + 6hhy = hyss

MAPLE may be helpful with the algebra, in particular if you don’t
remember your hyperbolic trigonometric identities.



