Math 11, Fall 2007 Midterm Exam

September 28, 2007

This test is a **closed-book**, **closed-notes**, **50-minute in-class** test. **No calculators** or **computers** are allowed. You must also **not discuss** any aspect of this test until noon on Friday, September 28.

Neatness counts. Please justify your steps, show necessary work, and include sentences when appropriate. Partial credit will be considered. Some points will be awarded for good writing style.

Name:					Mary - House
Section: Benjamin	10am	11am	Jacobsen	10am	11am

	Industrial Control
1	20
2	20
3	15
4	20
5	20
Style	5
Total	100

Problem 1. (20 points) Use mathematical induction to prove

$$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + N \cdot 2^N = 2 + (N-1)2^{N+1}$$
 for $N \ge 1$.

Be sure to write your answer in the correct form, explaining the logical steps – part of the grade is based on this.

Proof: Let $\varepsilon > 0$ be given. We mit follows that	ust find	such that for	Thon i
it follows that	<	$_{-}$. Choose $\delta = _{-}$	Hen i
follows that			

Problem 3. (15 points) Find $\lim_{x\to 0} \frac{\sin^2 x - x^2}{x^4}$. Justify your steps in computing the limits.

Problem 4. (20 points) Find f'(x) for the following functions (wherever f(x) is defined):

(a)
$$f(x) = \ln(\cos x)$$

(b)
$$f(x) = 2^{\sqrt{x}}$$

Problem 5. (20 points)

Part A. Suppose f(x) satisfies f'(x) = f(x) for all $x \in \mathbb{R}$. Show $f(x) = Ce^x$ for some constant $C \in \mathbb{R}$. Hint: Consider the function $g(x) = \frac{f(x)}{e^x}$.

Part B. Suppose
$$f(x) = \int_0^x f(t) dt$$
. Prove $f(x) = 0$ for all $x \in \mathbb{R}$.

Note: Even if you did not finish Part A, you can still use it for Part B.