0.1. **Exercise.** Let R be any ring and $n \ge 2$. Show that $M_n(R)$ is not commutative by considering the following example. Let $a, b \in R$ be such that $ab \ne 0$ and let

$$A = \begin{pmatrix} a & 0 & \\ 0 & 0 & \\ & \ddots \end{pmatrix} \qquad B = \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \ddots \end{pmatrix}$$

Compare AB and BA.

Definition 1. *The units of* $M_n(R)$ *are called* the general linear group, *which is denoted* $GL_n(R) = \{A \in M_n(R) : A \text{ is invertible}\}$

Definition 2. *Let* R *be a commutative ring with identity.*

- (1) The special linear group, $SL_n(R)$, is the subgroup of $GL_n(R)$ consisting of matrices with *determinant* 1.
- (2) The orthogonal group, $O_n(R)$, is the subgroup of $GL_n(R)$ consisting of orthogonal matrices, i.e. those matrices A such that $AA^t = I$, where A^t is the transpose of A, and I is the identity matrix.
- (3) The unitary group, U_n , is the subgroup of $GL_n(\mathbb{C})$ of matrices such that $AA^* = I$, where A^* is the transpose conjugate of A.
- (4) The symplectic group Sp_n is the subgroup of $GL_n(\mathbb{H})$ such that $AA^* = I$, where A^* is the quaternionic complex conjugate of A.

1. GROUP RINGS

Definition 3. *Let* R *be a commutative ring with identity and let* G *be a finite group*

 $G = \{g_1, \dots g_n\}.$

The group ring RG of G with coefficients in R is the set of all formal sums

$$\mathsf{RG} = \{ \mathfrak{a}_1 \mathfrak{g}_1 + \cdots \mathfrak{a}_n \mathfrak{g}_n : \mathfrak{a}_i \in \mathsf{R}, \ \mathfrak{g}_i \in \mathsf{G} \}.$$

If *e* is the identity in G and $a \in R$, we define

$$a \cdot e = a \in RG.$$

Similarly, for the identity $1 \in R$ and $g \in G$ we define

$$1 \cdot g = g \in RG.$$

Addition is defined componentwise

 $(a_1g_1 + \cdots + a_ng_n) + (b_1g_1 + \cdots + b_ng_n) = ((a_1 + b_1)g_1 + \cdots + (a_n + b_n)g_n).$

Multiplication is defined by

$$(ag_i) \cdot (bg_j) = (ab)(g_ig_j),$$

with the additional requirement that the distributive law holds.

1.1. **Exercise.** Show that RG has zero divisors for any non-trivial group G by considering the product

$$(1-g)(1+g+g^2+\cdots+g^{m-1}),$$

where $g \in G$ is an element of order m.

1.2. **Exercise.** Show that $\mathbb{R}Q$ is not the same ring as \mathbb{H} , where Q is the quaternion group and \mathbb{H} are is the quaternion ring.