0.1. Exercise. Let R be any ring and $n \geqslant 2$. Show that $M_{n}(R)$ is not commutative by considering the following example. Let $a, b \in R$ be such that $a b \neq 0$ and let

$$
A=\left(\begin{array}{ccc}
a & 0 & \\
0 & 0 & \\
& & \ddots .
\end{array}\right) \quad B=\left(\begin{array}{ccc}
0 & b & 0 \\
0 & 0 & 0 \\
0 & 0 & \ddots
\end{array}\right)
$$

Compare $A B$ and $B A$.

Definition 1. The units of $M_{n}(R)$ are called the general linear group, which is denoted

$$
\mathrm{GL}_{n}(\mathrm{R})=\left\{A \in M_{n}(R): A \text { is invertible }\right\}
$$

Definition 2. Let R be a commutative ring with identity.
(1) The special linear group, $\mathrm{SL}_{n}(R)$, is the subgroup of $G \mathrm{~L}_{n}(R)$ consisting of matrices with determinant 1.
(2) The orthogonal group, $\mathrm{O}_{n}(R)$, is the subgroup of $\mathrm{GL}_{n}(R)$ consisting of orthogonal matrices, i.e. those matrices A such that $A A^{t}=I$, where A^{t} is the transpose of A, and I is the identity matrix.
(3) The unitary group, U_{n}, is the subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ of matrices such that $A A^{*}=I$, where A^{*} is the transpose conjugate of A.
(4) The symplectic group Sp_{n} is the subgroup of $\mathrm{GL}_{n}(\mathbb{H})$ such that $A A^{*}=I$, where A^{*} is the quaternionic complex conjugate of A.

1. Group Rings

Definition 3. Let R be a commutative ring with identity and let G be a finite group

$$
G=\left\{g_{1}, \ldots g_{n}\right\} .
$$

The group ring RG of G with coefficients in R is the set of all formal sums

$$
R G=\left\{a_{1} g_{1}+\cdots a_{n} g_{n}: a_{i} \in R, g_{i} \in G\right\} .
$$

If e is the identity in G and $a \in R$, we define

$$
a \cdot e=a \in R G
$$

Similarly, for the identity $1 \in R$ and $g \in G$ we define

$$
1 \cdot g=g \in R G
$$

Addition is defined componentwise

$$
\left(a_{1} g_{1}+\cdots+a_{n} g_{n}\right)+\left(b_{1} g_{1}+\cdots+b_{n} g_{n}\right)=\left(\left(a_{1}+b_{1}\right) g_{1}+\cdots+\left(a_{n}+b_{n}\right) g_{n}\right)
$$

Multiplication is defined by

$$
\left(a g_{i}\right) \cdot\left(b g_{j}\right)=(a b)\left(g_{i} g_{j}\right),
$$

with the additional requirement that the distributive law holds.
1.1. Exercise. Show that RG has zero divisors for any non-trivial group G by considering the product

$$
(1-g)\left(1+g+g^{2}+\cdots+g^{m-1}\right)
$$

where $g \in G$ is an element of order m.
1.2. Exercise. Show that $\mathbb{R} Q$ is not the same ring as \mathbb{H}, where Q is the quaternion group and \mathbb{H} are is the quaternion ring.

