MATH 171 FALL 2008: LECTURE 16

DAGAN KARP

1. Principal Ideal Domain

Proposition 1. Every ideal in a Euclidean domain is principal.
Proof. Let $I \subseteq R$ be an ideal of a Euclidean domain with norm N. If $I=\{0\}$, then the result holds. Otherwise, consider the set

$$
\{N(a): 0 \neq a \in I\} \subseteq \mathbb{N} \cup\{0\}
$$

As a subset of nonnegative integers, this set has a minimum. Let $d \in I$ be any nonzero element of minimum norm. We claim that $I=(d)$. First, since $d \in I$, we have (d) $\subseteq I$. Now, let $a \in I$. The by the division algorithm, there exist $q, r \in R$ such that

$$
a=q d+r
$$

where $r=0$ or $N(r)<N(d)$. But we may write $r=a-q d \in I$. Therefore $N(r) \geqslant N(d)$ as d is of minimum norm. Therefore $r=0$, and thus $a=q d$ and $a \in(d)$. Therefore $I \subseteq(d)$.

Definition 2. A principal ideal domain is an integral domain in which every ideal is principal.
Example 3. Some basic examples:
(1) $\mathbb{Z}[x]$ is not a principal ideal, as we have shown directly $(2, x)$ is not principal.
(2) \mathbb{Z} is a PID, as every ideal is a subring, and hence as a set a subgroup, and hence cyclic, as \mathbb{Z} is cyclic.

Proposition 4. Let R be a PID, and let $\mathrm{I} \subseteq \mathrm{R}$ be a nonzero ideal. If I is prime, then I is maximal.
Proof. Suppose that J is an ideal and

$$
\mathrm{I} \subseteq \mathrm{~J} \subseteq \mathrm{R}
$$

We show that $I=J$ or $J=R$. First, since R is a PID, I and J must be principal, and there exist a and b in R such that $I=(a)$ and $J=(b)$. Since $I \subset J$, we have $(a) \subseteq(b)$ and hence $a \in(b)$. So there exists an element $x \in R$ such that

$$
a=b x
$$

But then $b x \in(a)$. Now (a) is prime, and thus $b \in(a)$ or $x \in(a)$.

If $b \in(a)$, then $(b) \subseteq(a)$, i.e. $J \subseteq I$ and hence $J=I$. Otherwise $x \in(a)$. So there exists $y \in R$ such that $x=y a$. Thus

$$
a=b x=b y a,
$$

and so $a(1-b y)=0$. But $a \neq 0$ since I is nonzero. Hence $1-b y=0$ and $b y=1$. Thus b is a unit and $J=(b)=R$.

Corollary 5. Let R be a commutative ring. If $\mathrm{R}[\mathrm{x}]$ is a PID, then R is a field.
Proof. Since $R \subseteq R[x]$ is a subring, R is also an integral domain. Note that the principal ideal (x) is nonzero and is prime, since

$$
R[x] /(x) \cong R
$$

and R is an integral domain. By the above Proposition, (x) is thus a maximal ideal. But then

$$
R[x] /(x) \cong R
$$

is a field.
Proposition 6. (Ascending chain condition) In a PID, any strictly ascending chain of ideals

$$
\mathrm{I}_{1} \varsubsetneqq \mathrm{I}_{2} \varsubsetneqq \mathrm{I}_{3} \cdots
$$

must be finite in length.
Proof. Let I be the union of all ideals of the PID R in this chain

$$
\mathrm{I}=\bigcup_{n \in \mathbb{N}} I_{n}
$$

First note that I is an ideal of R. It's elementary to see that I is a subring of R. If $a \in I$, then there is some n such that $a \in I_{n}$. Then $r a \in I_{n} \subset I$ for any $r \in R$. Thus I is indeed an ideal.

Thus I is Principal, as R is a PID. Thus there is an element $b \in R$ such that $I=(b)$. Then there is some m such that $b \in I_{m}$. Thus $(b) \subseteq I_{m}$. But for any i,

$$
\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{I}=(\mathrm{b}) \subseteq \mathrm{I}_{\mathrm{m}}
$$

Therefore I_{m} is the last member of the chain.
Exercise. (8.1)\# 4 Let R be a Euclidean domain.
(1) Prove that if $(a, b)=1$, and $a \mid b c$, then $a \mid c$. More generally, let a, b be nonzero. If $a \mid b c$, then $a /(a, b)$ divides c.
(2) Let $0 \neq a, b \in \mathbb{Z}$ and $N \in \mathbb{Z}$. Suppose there are integers x_{0}, y_{0} such that

$$
a x_{0}+b y_{0}=N .
$$

Show that if x and y are any other solutions,

$$
a x+b y=N
$$

then there exists an integer m such that

$$
x=x_{0}+m \frac{b}{(a, b)} \quad y=y_{0}-m \frac{a}{(a, b)}
$$

Moreover, any such x, y are indeed solutions for any integer m. [Hint: show that $a\left(x-x_{0}\right)=b\left(y-y_{0}\right)$ and use (1).]

Exercise. Can you show directly the ideal $(3,2+\sqrt{-5})$ is not principal in the ring $\mathbb{Z}[\sqrt{-5}]$?

