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1. PRIMES AND IRREDUCIBLES

We begin with a generalization of the notion of prime in integral domains.

Definition 1. Let R be an integral domain, and let r ∈ R be a nonzero non-unit. Then r is
irreducible if r = a ·b, for some a, b ∈ R, implies a or b is a unit in R. Otherwise r is reducible.

Example 2. Prime numbers in Z are irreducible. Indeed, if p = ab for a prime p and integers
a, b, then both a and b divide p, which implies (a, b) ∈ {(1, p), (p, 1)}. Therefore either a or b is
a unit in Z and p is irreducible.

Definition 3. A nonzero element p of an integral domain R is prime if the ideal (p) generated by
p is a prime ideal.

Remark 4. In other words, the nonzero p is prime in R if and only if ab ∈ (p) implies
a ∈ (p) or b ∈ (p), i.e. ab is a multiple of p implies a is a multiple of p or b is a multiple
of p, i.e. p|ab implies p|a or p|b.

Proposition 5. In an integral domain, every prime element is irreducible.

Proof. Let R be an integral domain, and let p ∈ R be prime. Suppose p = ab for some
a, b ∈ R. Then ab ∈ (p). Therefore a ∈ (p) or b ∈ (p). If a ∈ (p), then there exists r ∈ R
such that a = pr. Thus

p = ab = prb,

and hence p(1 − rb) = 0. But p 6= 0 by assumption since p is prime. Further R is an
integral domain, so 1 − rb = 0. Therefore b is a unit. Similarly, b ∈ (p) implies that a is a
unit. Thus p = ab implies that a or b is a unit. �

Remark 6. It is not the case that irreducible implies prime in integral domains. For ex-
ample, consider the domain R = Z

√
−5. We claim that 3 ∈ R is irreducible but not prime.

That 3 is irreducible is elementary but tedious and I’m not going to include the details
here. (Assume that there are integers a, b, c, d such that 3 = (a+b

√
−5)(c+d

√
−5). Then

ad + bc = 0 and 3 = ac − 5bd. . . ) However the ideal (3) is not prime in R. Indeed, note
that

(2−
√

−5)(2+
√

−5) = 4+ 5 = 9 ∈ (3).

But no multiple of 3 is equal to 2−
√

−5 or 2+
√

−5 in R. Hence (3) is not a prime ideal.

Proposition 7. In a principal ideal domain, every irreducible element is prime.
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Proof. Let r ∈ R be an irreducible element in a PID. We must show that r is prime, i.e.
that (r) is a prime ideal. In fact, we prove the stronger statement: (r) is maximal.

Suppose I ⊆ R is an ideal containing (r),

(r) ⊆ I ⊆ R.

Since R is a PID, I = (s) for some s ∈ R. Thus (r) ⊆ (s). Hence there exists a ∈ R such that

r = sa.

But r is irreducible. Thus s or a is a unit in R. If s is a unit, then I = (s) = R. Otherwise a
is a unit, and (r) = (s) = I. Therefore (r) is a maximal ideal. �

Combining the above, we have the following.

Corollary 8. In a PID, a nonzero element is prime if and only if it is irreducible.

2. UNIQUE FACTORIZATION DOMAINS

In the integers, prime numbers play a basic role in decomposition of integers, namely
prime factorizations. With our new general notions of prime and irreducible, we can
generalize this notion to rings other than integers.

Definition 9. An integral domain R is a unique factorization domain if every nonzero non-
unit element r ∈ R can be written as a finite product of irreducibles pi of R,

r = p1p2 · · ·pn.

Further, this decomposition is required to be unique up to units: If

r = q1q2 · · ·qm,

where qi is irreducible for all i, then m = n and there is a permutation σ ∈ Sn and units
u1, . . . , un such that

qσ(i) = piui.

Example 10. UFD’s and non UFD’s.

(1) A field F is a UFD trivially. Indeed, the set of all nonzero non-unit elements of F is the
empty set.

(2) The integral domain Z
√

−5 is not a UFD since

6 = 2 · 3 = (1−
√

−5)(1+
√

−5)

are two distinct irreducible decompositions of 6.

From this last example, we see that all UFD’s are integral domains, but not all integral
domains are UFD’s. Similarly, it turns out that all UFD’s are PID’s, but not all PID’s are
UFD’s. In order to prove such a theorem, we need several preliminary results.

Proposition 11. Let p ∈ R be an element of a UFD. Then p is prime if and only if p is irreducible.
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Proof. Since R is an integral domain, prime implies irreducible. We must show the con-
verse. So, suppose p is irreducible. We will show that p is prime. Suppose ab ∈ (p)

for some a, b ∈ R. Then there exists c ∈ R such that ab = pc. Choose some irreducible
decomposition of a and b,

a = s1s2 · · · sn b = t1t2 · · · tm,

where si and tj are irreducible for all i, j. Then we have

ab = pc = s1s2 · · · snt1t2 · · · tm.

Since p is irreducible, the uniqueness of the above irreducible decomposition of the ele-
ment ab ∈ R implies that, up to a unit, p is equal to a factor of a or b. Without loss of
generality, we have

si = pu

for some i and unit u ∈ R. But then p|si and hence p|a. �

Proposition 12. Let 0 6= a, b ∈ R be two nonzero elements of a UFD. Suppose

a = upaii p
a2
2 · · ·p

an
n b = vpb11 p

b2
2 · · ·p

bn
n ,

where p1, . . . , pn are distinct primes, u and v are units and the integer exponents are nonnegative
ai, bi > 0. Then

d = p
min(a1,b1)
1 p

min(a2,b2)
2 · · ·pmin(an,bn)

n

is the greatest common divisor of a and b.

Proof. First note that indeed d is a common divisor of a and b, since the exponent of each
prime factor of d is not larger than the corresponding power in a and b. Let d ′ be any
other common divisor, and consider its prime factorization

d ′ = qc11 q
c2
2 · · ·q

cm
m .

Then each qi divides d ′ and hence divides a and b. Thus there is some prime pj such that
qi divides pj by the previous proposition. Therefore

q1q2 · · ·qm|p1p2 · · ·pn.

Also, the exponents of d ′ must be less than or equal to the exponents of d. Therefore d ′|d.

Theorem 13. Principal ideal domains are unique factorization domains.

Proof. Let R be a PID, and let a ∈ R. We wish to show that a has an irreducible decom-
position, unique up to units. If a is irreducible, then we are done. Otherwise, there exist
nonzero non-units a1, a2 such that

a = a1 · a2.

If a1, a2 are irreducible, then we are done. Otherwise one is reducible; suppose it is a1.
Then there exist two nonzero non-units a11, a12 such that

a1 = a11 · a12 a = a11a12a2.
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We may repeat this process, continuing to decompose all reducible factors of a. Of course,
we need this process to terminate in order to express a as a finite product of irreducible
elements.

Note that the above factorization algorithm produces a strictly ascending chain of ideals

(a) $ (a1) $ (a11) $ · · · $ R.

We have shown that only finite ascending chains of ideals exist in PID’s. Therefore this
chain is finite. Hence the above factorization is finite.

We now must show that this decomposition is unique up to units. This is a straightfor-
ward application of induction. �

Corollary 14 (Fundamental Theorem of Arithmetic). The integers are a UFD.

Proof. The integers are a Euclidean domain, hence a PID, hence a UFD.
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