MATH 171 FALL 2008: LECTURE 18

DAGAN KARP

1. Group actions revisited

Recall a group action of the group G on the set S is a map of sets

$$
G \times S \rightarrow S
$$

such that for all $x, y \in G$ and $s \in S$

$$
x \cdot(y \cdot s)=(x y) \cdot s
$$

and

$$
1 \cdot s=s .
$$

This gives rise to the notion of permutation representation.
Definition 1. Let G be a group and A a set. A homomorphism from G to the group of permutations of A

$$
\sigma: G \rightarrow S_{A}
$$

is called a permutation representation of G . We then call $\mathrm{A} a \mathrm{G}$-set.
Remark 2. Note that a group action gives rise to (induces a) permutation representation and conversely. In other words, there is a one to one correspondence between group actions and permutation representations. Indeed, given a group action of G on A, we define a homomorphism

$$
\sigma: G \rightarrow S_{A}
$$

by

$$
\sigma(x) \mapsto \sigma_{x},
$$

where $\sigma_{x} \in S_{A}$ is defined by

$$
\sigma_{x}(a)=x \cdot a
$$

for any $a \in A$. That σ is a homomorphism follows directly from the properties of group actions:

$$
\sigma(x y)(a)=\sigma_{x y}(a)=(x y) \cdot a=x \cdot(y \cdot a)=\sigma_{x}(y \cdot a)=\sigma_{x}\left(\sigma_{y}(a)\right)=\sigma(x)(\sigma(y)(a)) .
$$

Conversely, given a permutation representation of G with set A,

$$
\sigma: G \rightarrow S_{A}
$$

Date: November 10, 2008.
we can construct a map

$$
G \times A \rightarrow A
$$

given by

$$
(x, a) \mapsto \sigma(x)(a)=x \cdot a
$$

That this is a group action follows directly from the fact that σ is a homomorphism:

$$
(x y) \cdot a=\sigma(x y)(a)=\sigma(x) \circ \sigma(y)(a)=x \cdot(y \cdot a)
$$

and

$$
1 \cdot a=\sigma(1)(a)=I(a)=a
$$

where $I \in S_{A}$ is the identity permutation, and the second to last equality holds because identity maps to identity under any homomorphism.

Example 3. (1) The group S_{n} of permutations of n elements acts on the set $\{1, \ldots, n\}$.
(2) Any group acts on any set trivially, setting $g \cdot s=s$ for all $(g, s) \in G \times S$.
(3) The dihedral group D_{4} acts on the set of vertices of the square.
(4) The general linear group $\mathrm{GL}_{n}(\mathbb{R})$ acts on \mathbb{R}^{n} by matrix multiplication

$$
A \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right) \times\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

1.1. Conjugation. The group G may act on itself, that is act on the set of elements of G. For $x \in G$, let

$$
c_{x}: G \rightarrow G
$$

be defined by

$$
c_{x}(y) \mapsto x y x^{-1}
$$

This gives rise to a permutation representation. In fact, we have a homomorphism

$$
G \rightarrow \operatorname{Aut}(G)
$$

Indeed

$$
c_{x}(y z)=x y z x^{-1}=\left(x y x^{-1}\right)\left(x z x^{-1}\right)=c_{x}(y) c_{x}(z)
$$

Further, the map $c_{x^{-1}}: G \rightarrow G$ is immediately seen to be an inverse of c_{x}.
Definition 4. The above group action $\mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ given by $(\mathrm{x}, \mathrm{g}) \mapsto \mathrm{c}_{\mathrm{x}} \mathrm{g}$ is called conjugation. By abuse of terminology, the associated permutation representation is also called conjugation.

Definition 5. For each $x \in G$, the automorphism c_{x} is called an inner automorphism of G .
Definition 6. Let $\mathrm{G} \rightarrow \operatorname{Aut}(\mathrm{G})$ be be given by conjugation. The kernel of this homomorphism is called the center of G , denoted

$$
\mathrm{Z}(\mathrm{G})=\left\{x \in \mathrm{G}: \mathrm{c}_{x}=\mathrm{I}\right\},
$$

where $\mathrm{I} \in \operatorname{Aut}(\mathrm{G})$ is the identity automorphism.

Remark 7. We have

$$
\begin{aligned}
Z(G) & =\left\{x \in G: c_{x}=I\right\} \\
& =\left\{x \in G: x y x^{-1}=y \text { for all } y \in G\right\} \\
& =\{x \in G: x y=y x \text { for all } y \in G\} .
\end{aligned}
$$

So the center of G is the set of all elements which commute with all elements of G .
Definition 8. Let A be a G-set, and let $a \in A$. The stabilizer of the element a is the set of elements of G which fix a , denoted G_{a},

$$
\mathrm{G}_{\mathrm{a}}=\{x \in \mathrm{G}: x \cdot \mathrm{a}=\mathrm{a}\} .
$$

Definition 9. The centralizer of $x \in G$ is the stabilizer of the element x under the action of conjugation

$$
C(x)=C_{G}(x)=\left\{y \in G: c_{y}(x)=x\right\} .
$$

Remark 10. Note that

$$
\begin{align*}
C(x) & =\left\{y \in G: c_{y}(x)=x\right\} \tag{1}\\
& =\left\{y \in G: y x y^{-1}=x\right\} \tag{2}\\
& =\{y \in G: y x=x y\} . \tag{3}
\end{align*}
$$

Hence, the centralizer of x is the set of all elements of G commuting with x.
Proposition 11. When the group G acts on the set A, the binary relation

$$
\mathrm{a} \sim \mathrm{~b} \Longleftrightarrow a=x \cdot b \text { for some } x \in G
$$

is an equivalence relation on A.
Proof. $1 \cdot x=x$, so the relation is reflexive. It is symmetric, as $a=x \cdot b$ implies $b=x^{-1} \cdot a$. It is transitive, as $a=x \cdot b$ and $b=y \cdot c$ imply

$$
a=x \cdot(y \cdot c)=(x y) \cdot c
$$

Definition 12. Let G act on A and $\mathrm{a} \in A$. The orbit of a under the action of G is the equivalence class of a under the above equiv lance relation.

Definition 13. The action of the group G on the set A is transitive if there is only one orbit, i.e, given $\mathrm{a}, \mathrm{b} \in A$ there exists $\mathrm{x} \in \mathrm{G}$ such that $\mathrm{a}=\mathrm{x} \cdot \mathrm{b}$.

Example 14. The group S_{n} acts transitively on $\{1,2, \ldots, n\}$.
Proposition 15. The stabilizer G_{a} of a is a subgroup of G . There is a one to one correspondence between the left cosets of G_{a} and the elements of the orbit of a ; hence the order of the orbit of a equals the index of G_{a}.

Proof. If $x, y \in G_{a}$, then $a=y \cdot a$, hence $y^{-1} \cdot a=a$ and

$$
x y^{-1} \cdot a=x \cdot\left(y^{-1} \cdot a\right)=x \cdot a=a
$$

Thus $x y^{-1} \in G_{a}$ and therefore $G_{a} \leqslant G$.
Now, let b be an element of the orbit of a, i.e. $b=x \cdot a$ for some $x \in G$. Define

$$
C(b)=\{y \in G: y \cdot a=b\} .
$$

Then $y \in C(b)$ if and only if $y \cdot a=x \cdot a$, and so

$$
a=x^{-1} \cdot(y \cdot a)=\left(x^{-1} y\right) \cdot a
$$

Therefore $x^{-1} y \in G_{a}$ and $y \in x G_{a}$. Therefore $C(b)=x G_{a}$ is a left coset of G_{a}.
Conversely, let $x G_{a}$ be a left coset of G_{a}. Then $y \in x G_{a}$ if and only if $x^{-1} y \in G_{a}$, i.e. $x^{-1} y \cdot a=a$, i.e., $y \cdot a=x \cdot a$. Hence $x G_{a} \cdot a$ is a single element of A; call it $\theta\left(x G_{a}\right)$.

The maps θ and C are mutually inverse bijections.
Corollary 16. For each $x \in G$, the centralizer $C_{C}(x)$ is a subgroup of G, and the number of conjugates of x equals the index of the centralizer

$$
\left|C_{x}\right|=\left[G: C_{G}(x)\right] .
$$

