
MATH 171 FALL 2008: LECTURE 18

DAGAN KARP

1. GROUP ACTIONS REVISITED

Recall a group action of the group G on the set S is a map of sets

G× S→ S

such that for all x, y ∈ G and s ∈ S

x · (y · s) = (xy) · s

and
1 · s = s.

This gives rise to the notion of permutation representation.

Definition 1. Let G be a group and A a set. A homomorphism from G to the group of permuta-
tions of A

σ : G→ SA

is called a permutation representation of G. We then call A a G-set.

Remark 2. Note that a group action gives rise to (induces a) permutation representation
and conversely. In other words, there is a one to one correspondence between group
actions and permutation representations. Indeed, given a group action of G on A, we
define a homomorphism

σ : G→ SA

by
σ(x) 7→ σx,

where σx ∈ SA is defined by
σx(a) = x · a

for any a ∈ A. That σ is a homomorphism follows directly from the properties of group
actions:

σ(xy)(a) = σxy(a) = (xy) · a = x · (y · a) = σx(y · a) = σx(σy(a)) = σ(x)(σ(y)(a)).

Conversely, given a permutation representation of Gwith set A,

σ : G→ SA,
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we can construct a map
G×A→ A

given by
(x, a) 7→ σ(x)(a) = x · a.

That this is a group action follows directly from the fact that σ is a homomorphism:

(xy) · a = σ(xy)(a) = σ(x) ◦ σ(y)(a) = x · (y · a),

and
1 · a = σ(1)(a) = I(a) = a,

where I ∈ SA is the identity permutation, and the second to last equality holds because
identity maps to identity under any homomorphism.

Example 3. (1) The group Sn of permutations of n elements acts on the set {1, . . . , n}.
(2) Any group acts on any set trivially, setting g · s = s for all (g, s) ∈ G× S.
(3) The dihedral group D4 acts on the set of vertices of the square.
(4) The general linear group GLn(R) acts on Rn by matrix multiplication

A · (x1, . . . , xn) =

a1,1 · · · a1,n

...
...

an,1 · · · an,n

×

x1

x2

...
xn


1.1. Conjugation. The group G may act on itself, that is act on the set of elements of G.
For x ∈ G, let

cx : G→ G

be defined by
cx(y) 7→ xyx−1.

This gives rise to a permutation representation. In fact, we have a homomorphism

G→ Aut(G).

Indeed
cx(yz) = xyzx−1 = (xyx−1)(xzx−1) = cx(y)cx(z).

Further, the map cx−1 : G→ G is immediately seen to be an inverse of cx.

Definition 4. The above group action G×G→ G given by (x, g) 7→ cxg is called conjugation.
By abuse of terminology, the associated permutation representation is also called conjugation.

Definition 5. For each x ∈ G, the automorphism cx is called an inner automorphism of G.

Definition 6. Let G→ Aut(G) be be given by conjugation. The kernel of this homomorphism is
called the center of G, denoted

Z(G) = {x ∈ G : cx = I},

where I ∈ Aut(G) is the identity automorphism.
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Remark 7. We have

Z(G) = {x ∈ G : cx = I}

= {x ∈ G : xyx−1 = y for all y ∈ G}

= {x ∈ G : xy = yx for all y ∈ G}.

So the center of G is the set of all elements which commute with all elements of G.

Definition 8. Let A be a G-set, and let a ∈ A. The stabilizer of the element a is the set of
elements of G which fix a, denoted Ga,

Ga = {x ∈ G : x · a = a}.

Definition 9. The centralizer of x ∈ G is the stabilizer of the element x under the action of
conjugation

C(x) = CG(x) = {y ∈ G : cy(x) = x}.

Remark 10. Note that

C(x) = {y ∈ G : cy(x) = x}(1)

= {y ∈ G : yxy−1 = x}(2)

= {y ∈ G : yx = xy}.(3)

Hence, the centralizer of x is the set of all elements of G commuting with x.

Proposition 11. When the group G acts on the set A, the binary relation

a ∼ b⇐⇒ a = x · b for some x ∈ G

is an equivalence relation on A.

Proof. 1 ·x = x, so the relation is reflexive. It is symmetric, as a = x ·b implies b = x−1 ·a.
It is transitive, as a = x · b and b = y · c imply

a = x · (y · c) = (xy) · c.

�

Definition 12. LetG act onA and a ∈ A. The orbit of a under the action ofG is the equivalence
class of a under the above equiv lance relation.

Definition 13. The action of the group G on the set A is transitive if there is only one orbit, i.e,
given a, b ∈ A there exists x ∈ G such that a = x · b.

Example 14. The group Sn acts transitively on {1, 2, . . . , n}.

Proposition 15. The stabilizer Ga of a is a subgroup of G. There is a one to one correspondence
between the left cosets of Ga and the elements of the orbit of a; hence the order of the orbit of a
equals the index of Ga.
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Proof. If x, y ∈ Ga, then a = y · a, hence y−1 · a = a and

xy−1 · a = x · (y−1 · a) = x · a = a.

Thus xy−1 ∈ Ga and therefore Ga 6 G.

Now, let b be an element of the orbit of a, i.e. b = x · a for some x ∈ G. Define

C(b) = {y ∈ G : y · a = b}.

Then y ∈ C(b) if and only if y · a = x · a, and so

a = x−1 · (y · a) = (x−1y) · a.

Therefore x−1y ∈ Ga and y ∈ xGa. Therefore C(b) = xGa is a left coset of Ga.

Conversely, let xGa be a left coset of Ga. Then y ∈ xGa if and only if x−1y ∈ Ga, i.e.
x−1y · a = a, i.e., y · a = x · a. Hence xGa · a is a single element of A; call it θ(xGa).

The maps θ and C are mutually inverse bijections.

Corollary 16. For each x ∈ G, the centralizer CC(x) is a subgroup of G, and the number of
conjugates of x equals the index of the centralizer

|Cx| = [G : CG(x)].
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