MATH 171 FALL 2008: LECTURE 18

DAGAN KARP

1. GROUP ACTIONS REVISITED

Recall a group action of the group G on the set S is a map of sets

 $G\times S\to S$

such that for all $x, y \in G$ and $s \in S$

$$\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{s}) = (\mathbf{x}\mathbf{y}) \cdot \mathbf{s}$$

and

 $1 \cdot s = s$.

This gives rise to the notion of permutation representation.

Definition 1. *Let* G *be a group and* A *a set.* A *homomorphism from* G *to the group of permutations of* A

 $\sigma:G\to S_A$

is called a permutation representation of G. We then call A a G-set.

Remark 2. Note that a group action gives rise to (induces a) permutation representation and conversely. In other words, there is a one to one correspondence between group actions and permutation representations. Indeed, given a group action of G on A, we define a homomorphism

 $\sigma:G\to S_A$

by

 $\sigma(\mathbf{x}) \mapsto \sigma_{\mathbf{x}},$

where $\sigma_x \in S_A$ is defined by

$$\sigma_{\mathbf{x}}(\mathbf{a}) = \mathbf{x} \cdot \mathbf{a}$$

for any $a \in A$. That σ is a homomorphism follows directly from the properties of group actions:

$$\sigma(xy)(a) = \sigma_{xy}(a) = (xy) \cdot a = x \cdot (y \cdot a) = \sigma_x(y \cdot a) = \sigma_x(\sigma_y(a)) = \sigma(x)(\sigma(y)(a))$$

Conversely, given a permutation representation of G with set A,

$$\sigma: G \rightarrow S_A,$$

Date: November 10, 2008.

we can construct a map

$$G \times A \rightarrow A$$

given by

$$(\mathbf{x}, \mathbf{a}) \mapsto \sigma(\mathbf{x})(\mathbf{a}) = \mathbf{x} \cdot \mathbf{a}.$$

That this is a group action follows directly from the fact that σ is a homomorphism:

$$(xy) \cdot a = \sigma(xy)(a) = \sigma(x) \circ \sigma(y)(a) = x \cdot (y \cdot a),$$

and

$$1 \cdot a = \sigma(1)(a) = I(a) = a,$$

where $I \in S_A$ is the identity permutation, and the second to last equality holds because identity maps to identity under any homomorphism.

Example 3. (1) The group S_n of permutations of n elements acts on the set $\{1, \ldots, n\}$.

(2) Any group acts on any set trivially, setting $g \cdot s = s$ for all $(g, s) \in G \times S$.

- (3) The dihedral group D_4 acts on the set of vertices of the square.
- (4) The general linear group $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication

$$A \cdot (x_1, \dots, x_n) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

1.1. **Conjugation.** The group G may act on itself, that is act on the set of elements of G. For $x \in G$, let

$$c_{\mathbf{x}}: \mathbf{G} \to \mathbf{G}$$

be defined by

$$c_{x}(y) \mapsto xyx^{-1}$$

This gives rise to a permutation representation. In fact, we have a homomorphism

$$G \rightarrow Aut(G).$$

Indeed

$$c_x(yz) = xyzx^{-1} = (xyx^{-1})(xzx^{-1}) = c_x(y)c_x(z).$$

Further, the map $c_{x^{-1}}$: $G \to G$ is immediately seen to be an inverse of c_x .

Definition 4. The above group action $G \times G \rightarrow G$ given by $(x, g) \mapsto c_x g$ is called conjugation. By abuse of terminology, the associated permutation representation is also called conjugation.

Definition 5. For each $x \in G$, the automorphism c_x is called an inner automorphism of G.

Definition 6. *Let* $G \rightarrow Aut(G)$ *be be given by conjugation. The kernel of this homomorphism is called the* center *of* G*, denoted*

$$\mathsf{Z}(\mathsf{G}) = \{ \mathsf{x} \in \mathsf{G} : \mathsf{c}_{\mathsf{x}} = \mathsf{I} \},\$$

where $I \in Aut(G)$ is the identity automorphism.

Remark 7. We have

$$Z(G) = \{x \in G : c_x = I\}$$
$$= \{x \in G : xyx^{-1} = y \text{ for all } y \in G\}$$
$$= \{x \in G : xy = yx \text{ for all } y \in G\}.$$

So the center of G is the set of all elements which commute with all elements of G.

Definition 8. Let A be a G-set, and let $a \in A$. The stabilizer of the element a is the set of elements of G which fix a, denoted G_{a} ,

$$G_{\mathfrak{a}} = \{ \mathbf{x} \in \mathbf{G} : \mathbf{x} \cdot \mathfrak{a} = \mathfrak{a} \}.$$

Definition 9. The centralizer of $x \in G$ is the stabilizer of the element x under the action of *conjugation*

$$C(x) = C_G(x) = \{y \in G : c_y(x) = x\}.$$

Remark 10. Note that

(1)
$$C(x) = \{y \in G : c_y(x) = x\}$$

(2)
$$= \{y \in G : yxy^{-1} = x\}$$

$$(3) \qquad \qquad = \{y \in G : yx = xy\}.$$

Hence, the centralizer of x is the set of all elements of G commuting with x.

Proposition 11. When the group G acts on the set A, the binary relation

 $a \sim b \iff a = x \cdot b$ for some $x \in G$

is an equivalence relation on A.

Proof. $1 \cdot x = x$, so the relation is reflexive. It is symmetric, as $a = x \cdot b$ implies $b = x^{-1} \cdot a$. It is transitive, as $a = x \cdot b$ and $b = y \cdot c$ imply

$$\mathbf{a} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{c}) = (\mathbf{x}\mathbf{y}) \cdot \mathbf{c}$$

Definition 12. *Let* G *act on* A *and* $a \in A$ *. The* orbit *of* a *under the action of* G *is the equivalence class of* a *under the above equiv lance relation.*

Definition 13. *The action of the group* G *on the set* A *is* transitive *if there is only one orbit, i.e, given* $a, b \in A$ *there exists* $x \in G$ *such that* $a = x \cdot b$.

Example 14. *The group* S_n *acts transitively on* $\{1, 2, ..., n\}$ *.*

Proposition 15. The stabilizer G_{α} of α is a subgroup of G. There is a one to one correspondence between the left cosets of G_{α} and the elements of the orbit of α ; hence the order of the orbit of α equals the index of G_{α} .

Proof. If $x, y \in G_a$, then $a = y \cdot a$, hence $y^{-1} \cdot a = a$ and

$$xy^{-1} \cdot a = x \cdot (y^{-1} \cdot a) = x \cdot a = a.$$

Thus $xy^{-1} \in G_{\mathfrak{a}}$ and therefore $G_{\mathfrak{a}} \leqslant G$.

Now, let b be an element of the orbit of a, i.e. $b = x \cdot a$ for some $x \in G$. Define

$$C(b) = \{ y \in G : y \cdot a = b \}.$$

Then $y \in C(b)$ if and only if $y \cdot a = x \cdot a$, and so

$$a = x^{-1} \cdot (y \cdot a) = (x^{-1}y) \cdot a.$$

Therefore $x^{-1}y \in G_a$ and $y \in xG_a$. Therefore $C(b) = xG_a$ is a left coset of G_a .

Conversely, let xG_a be a left coset of G_a . Then $y \in xG_a$ if and only if $x^{-1}y \in G_a$, i.e. $x^{-1}y \cdot a = a$, i.e., $y \cdot a = x \cdot a$. Hence $xG_a \cdot a$ is a single element of A; call it $\theta(xG_a)$.

The maps θ and C are mutually inverse bijections.

Corollary 16. For each $x \in G$, the centralizer $C_C(x)$ is a subgroup of G, and the number of conjugates of x equals the index of the centralizer

$$|\mathbf{C}_{\mathbf{x}}| = [\mathbf{G} : \mathbf{C}_{\mathbf{G}}(\mathbf{x})].$$