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DAGAN KARP

1. GROUP ACTIONS CONTINUED

Remark 1. Recall that group actions G � A give rise to equivalence relations

[a] = {x · a : x ∈ G}

for a ∈ A. The equivalence class [a] of a is called the orbit of a.

In particular, any group G acts on itself via conjugation. The map

G×G→ G

is given by
(x, y) 7→ x · y = cx(y) = xyx−1.

The equivalence classes under this action are called conjugacy classes. For y ∈ G, the
conjugacy class of y, denoted Cy is

Cy = [y] = {xyx−1 : x ∈ G}.

Proposition 2. The stabilizer Ga of a is a subgroup of G. There is a one to one correspondence
between the left cosets of Ga and the elements of the orbit of a; hence the order of the orbit of a
equals the index of Ga.

Proof. If x, y ∈ Ga, then a = y · a, hence y−1 · a = a and

xy−1 · a = x · (y−1 · a) = x · a = a.

Thus xy−1 ∈ Ga and therefore Ga 6 G.

Now, let b be an element of the orbit of a, i.e. b = x · a for some x ∈ G. Define

C(b) = {y ∈ G : y · a = b}.

Then y ∈ C(b) if and only if y · a = x · a, and so

a = x−1 · (y · a) = (x−1y) · a.

Therefore x−1y ∈ Ga and y ∈ xGa. Therefore C(b) = xGa is a left coset of Ga.

Conversely, let xGa be a left coset of Ga. Then y ∈ xGa if and only if x−1y ∈ Ga, i.e.
x−1y · a = a, i.e., y · a = x · a. Hence xGa · a is a single element of A; call it θ(xGa).

The maps θ and C are mutually inverse bijections.
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Corollary 3. For each x ∈ G, the centralizer CG(x) is a subgroup of G, and the number of
conjugates of x equals the index of the centralizer

|Cx| = [G : CG(x)].

As an immediate application of the above, we have the following.

Corollary 4. For any group G and x ∈ G, the following are equivalent.

(1) |Cx| = 1.
(2) CG(x) = G.
(3) xy = yx for all y ∈ G.

Theorem 5 (Class equation). For any group G,

|G| = |Z(G)| +
∑

|Cx|>1

|Cx|.

Proof. The conjugacy classes of elements of G partition G. Thus G =
⋃

x∈GCx, where
this union is disjoint, and hence |G| =

∑
x∈G |Cx|. Separating the trivial from nontrivial

conjugacy classes yields the class equation.

|G| =
∑

|Cx|=1

|Cx| +
∑

|Cx|>1

|Cx| = |Z(G)| +
∑

|Cx|>1

|Cx|.

�

Proposition 6. Every group of order pn > 1 with p prime has a nontrivial center.

Proof. Let G have order pn. By Lagrange’s theorem, the index of any subgroup of G is
a power of p. Hence the order of every conjugacy class is a power of p. In particular
p divides

∑
|Cx|>1 |Cx. Hence by the class equation p divides |Z(G)|. Therefore |Z(G)| 6=

1. �

Lemma 7. If G/Z(G) is cyclic, then G is Abelian.

Proposition 8. Every group of order p2 with p prime is Abelian.

Proof. Let G = p2. By the above, |Z(G)| = p or p2. If |Z(G)| = p2, then G = Z(G) and G is
Abelian. Otherwise,

|G/Z(G)| = |G|/|Z(G)| = p.

Hence G/Z(G) is cyclic and G is Abelian by the above. �

Remark 9. Note the strange logic here. IfG is Abelian, thenG = Z(G) and hence |Z(G)| =

p2, so the second case can not be realized.

2. CAYLEY’S THEOREM AND PERMUTATIONS

Theorem 10 (Cayley’s theorem). Every group is isomorphic to a subgroup of a group of permu-
tations. If G is a group of order n, then G is isomorphic to a subgroup of Sn.
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Proof. We define a map
G→ SG

by
g 7→ λg,

where g ∈ G and λg : G→ G is given by

λg(x) = g · x = gx

for any x ∈ G.

We need to show that λg is indeed a permutation of the elements of G and that G is
mapped isomorphically onto its image.

For any g ∈ G, that λg ∈ SG is elementary. It’s inverse is given by λg−1 ; for each x ∈ G,

λg ◦ λg−1(x) = gg−1x = x = g−1g = λg−1 ◦ λg(x).

Now we show that our map G→ SG is a homomorphism. But for each x ∈ G,

λgg ′(x) = gg ′(x) = g(g ′x) = λg(λg ′(x)).

Finally, we inspect the kernel.

λg = I⇐⇒ λg(x) = x for all x ∈ G.

In that case gx = x for all x ∈ G. Therefore g = 1. Therefore G is isomorphic to its image,
which is a subgroup of SG. �

Definition 11. The permutation representation induced by left multiplication (as above) is called
the left regular representation of G.

This gives us an interesting and historical perspective. One may attempt to study all
of group theory via symmetric groups. This is in fact the historical approach. Our more
abstract and axiomatic study of the subject arose only later.

With that in mind, let’s apply some of our knowledge of group actions to the specific
example of the symmetric group.

Definition 12. Let σ ∈ Sn be a permutation. The cycle type of σ is a nonincreasing sequence of
positive integers (l1, l2, . . . , lr),

l1 > l2 > · · · > lr
such that σ may be decomposed into disjoint cycles length li,

σ = σ1σ2 · · ·σr |σi| = li.

Example 13. The cycle type of (123)(34) ∈ S4 is 4, as

(123)(34) = (1234).

The cycle type of (12)(34) is (2, 2), as this permutation is written as a product of disjoint transpo-
sitions.
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Proposition 14. Every permutation is a product of pairwise disjoint cycles; moreover this decom-
position is unique up to the order of the terms.

Theorem 15. Two permutations in Sn are conjugate if and only if they are of the same cycle type.

Lemma 16. For a permutation σ ∈ Sn, and τ = (a1, . . . , ak) a k-cycle in Sn,

στσ−1 = (σ(a1), . . . , σ(ak)).

Proof. Note that
στσ−1(σ(ai)) = στ(ai) = σ(ai+1).

Also, if b 6= a1, . . . , ak, then σ−1(b) 6= a1, . . . , ak. Thus τ fixes σ−1(b),

τσ−1(b) = σ−1(b).

Thus στσ−1(b) = σσ−1(b) = b. Therefore

στσ−1 = (σ(a1), . . . , σ(ak)).

�

Proof of theorem. Suppose that σ and τ are conjugate in Sn. Then there exists a permu-
tation α ∈ Sn such that

σ = ατα−1.

Inspect the cycle decomposition of τ,

τ = τ1τ2 · · · τr,

where τi are pairwise disjoint cycles of length li,

τi = (ai,1 . . . ai,li
).

Then

σ = ατα−1

= ατ1 · · · τkα
−1

= (ατ1α
−1)(ατ2α

−1)(· · ·ατkα
−1)

= (α(a1,1) · · ·α(a1,l1
))(α(a2,1) · · ·α(a2,l2

)) · · · (α(ar,1) · · ·α(ar,lr
)).

These are disjoint cycles and hence σ has the same cycle structure as τ.

Conversely, suppose σ and τ have the same cycle structure. Define α to be the function
mapping the ith integer in the cycle decomposition (ignoring parentheses) of σ to the ith

integer in the cycle decomposition of τ. Then

ασα−1 = τ.

�
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