MATH 171 FALL 2008: LECTURE 20

DAGAN KARP

1. SYLOW THEOREMS

The first Sylow theorem is a partial converse to Lagrange's theorem. For a group G of order n, the order of every subgroup divides n. It is not the case that every divisor of n is the order of a subgroup of G. But this is the case if the divisor is the power of a prime.

Definition 1. For a prime number p, a finite group G is a p-group if the order of G is a power of p.

Definition 2. A p-subgroup of a finite group G is a subgroup of order p^k for some k where p is prime.

Definition 3. Let G be a finite group of order n and p be prime. A Sylow p-subgroup of G is a p-subgroup of order p^k such that $p^k|n$ and $p^{k+1} \nmid n$.

Theorem 4 (Sylow's first theorem). Let G be a finite group and p a prime number. If p^k divides |G|, then G contains a subgroup of order p^k . In particular, G contains a Sylow p-subgroup.

In our proof of this theorem, we'll use the following lemma, presented as a proposition in our study of the classification of groups.

Proposition 5. Let G be a finite Abelian group and p a prime number. If p divides |G|, then G contains an element of order p.

Proof. We induce on the order of G. If |G| = 1, then the theorem holds trivially.

Now assume the theorem holds for all groups of order less than |G|. If G contains a proper subgroup H such that p^k divides |H|, then H has a subgroup of order p^k and we are done.

Otherwise, p^k does not divide the order of any proper subgroup of G. In this case, consider the class equation

$$|G| = |Z(G)| + \sum_{|C_x| > 1} |C_x|.$$

Since $|G| = |C_G(x)| \cdot [G : C_G(x)]$ and \mathfrak{p}^k divides |G| and not $|C_G(x)|$, it must be the case that \mathfrak{p}^k divides $[G : C_G(x)] = |C_x|$.

Therefore p divides |Z(G)|, and by the above proposition Z(G) has an element x of order p. Then $\langle x \rangle \subseteq G$. But p^{k-1} divides $|G/\langle x \rangle|$, and hence by the induction hypothesis $G/\langle x \rangle$

Date: November 17, 2008.

has a subgroup of order p^{k-1} . This subgroup is of the form $H/\langle x \rangle$ where $H \leqslant G$. But we have $|H| = p^k$.

Corollary 6 (Cauchy's theorem). Let G be a finite group and p a prime number. If p divides |G|, then G contains an element of order p.

The following are also called Sylow theorems.

Theorem 7. The number of Sylow p-subgroups of a finite group G divides |G| and is congruent to 1 modulo p.

Theorem 8. All Sylow p-subgroups of a finite group are conjugate.

Corollary 9. A Sylow p-subgroup of G is a normal subgroup of G if and only if it is the only Sylow p-subgroup of G.

Example 10. The Sylow 2-subgroups of S_3 are $\{(1), (12)\}, \{(1), (13)\}$ and $\{(1), (23)\}$.

$$(13)\{(1), (12)\}(13)^{-1} = \{(1), (23)\}\$$

$$(23)\{(1), (12)\}(23)^{-1} = \{(1), (13)\}$$

Proposition 11. Let |G| = 2p where p is prime. Then G is cyclic or dihedral.

Proof. By Cauchy's theorem, G has elements a, b of order 2 and p, respectively. Then G is generated by $\{a, b\}$. Now $\langle b \rangle$ has index 2 and hence is normal. Therefore

$$aba^{-1} = b^k$$

for some k < p. Therefore

$$b^{k^2} = (b^k)^k = (aba^{-1})^k = ab^ka^{-1} = a(aba^{-1})a^{-1} = a^2ba^{-2}.$$

But $a^2 = 1$. Thus $b^{k^2} - 1 = 1$. Therefore p divides $k^2 - 1$.

$$k^2 = (k-1)(k+1).$$

But k < p. So k - 1 = 0 or p = (k + 1). In the first case,

$$\mathfrak{a}\mathfrak{b}\mathfrak{a}^{-1}=\mathfrak{b}$$

and G is Abelian, as a, b generate G. Then |ab| = 2p.

Otherwise the elements of G may be written a^ib^j where i=0 or i=1 and $0 \le j < p$. Also,

$$a^ib^jab^l=a^{i+1}b^{l-j}.$$

Proposition 12. Let p > q be prime. If q does not divide p-1, then every group of order pq is cyclic.

Exercise.

- (1) Show that every group of order 30 has a nontrivial proper normal subgroup.
- (2) Do the same for groups of order 56.
- (3) Prove that a group of order 175 is Abelian.
- (4) Prove that a group of order 105 has a subgroup of order 35.
- (5) Find a Sylow 2-subgroup of S_4 , and show that it is isomorphic to D_4 . ($|D_4| = 8$)