MATH 171 FALL 2008: LECTURE 21

DAGAN KARP

1. SYLOW THEOREMS CONTINUED

1.1. Normalizers. Let
H={H<G}
be the set of all subgroups of a group G. Then G acts on H by conjugation,
g-H=gHg .

where g € G.

Indeed, note that for any g € G, gHg™' < G. Let x,y € gHg'. Then there exist
hi, h, € Hsuch that
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x =ghig~ y=ghyg .

Theny~' = gh,'g~" and
xy ' = (ghig ")(gh,'g" ") =g(hih,;')g ' € G,

where the last statement follows as h; hz’1 € H, because H < G. Therefore we have a well
defined conjugation map

GxH— H.
To verify that this is a group action, note that
1-H=1HI""=H

for any H < G. Further, for any g1,9, € G,

(g192) - H=(g192)H(g192)""

= g192Hg; 'g7"
=g7-(g2Hgy ")
=g1-(g2-H).

Therefore G does indeed act on J{. Thus the orbits of G form equivalence classes.

Definition 1. The conjugacy class of a subgroup H of a group G is the orbit of H in 3 under
the action of G by conjugation. It is denoted Cyy.
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Definition 2. The normalizer N (H) of the subgroup H of the group G is the stabilizer of H € 3
under the conjugation action of G.

Ng(H) =N(H)={ge G:g-H=Hj]
={geG:gHg ' =H}.

Proposition 3. The normalizer Ng(H) of H < G is the largest subgroup of G such that H <
Ng(H).
Proof. Suppose there is a subgroup K < G such that

H<JIK<G.
Then by definition of normal, we have, for k € K,

kHK ™' = H.
Therefore k € Ng(H). Thus K € Ng(H). O

1.2. p-groups acting on finite sets.

Lemma 4. Let H be a p-group acting on a finite set S.

(@) The number of fixed points of H is congruent to 1 mod p.
(b) If H has exactly one fixed point, then |S| =1 mod p.

Proof. Because the orbits of S partition S, we may express S as a disjoint union of its orbits

S= | |lsi.

S{E€S

SI= > Ilsill.

si€S
But the order of the orbit is equal to the index of the stabilizer! Thus |[si]| = [H : Hs;].
Thus we obtain what is called the orbit equation:

(1) S| =) [H:Hs.

si€S

Therefore

We may split this sum into two pieces

@) Sf= )  [H:HsJ+ > [H:Hsi
si€S si€S
[H:Hsi]=1 [H:Hs;]#1

By Lagrange’s theorem, we have
[H| = [Hsq| - [H: Hs3].
But H is a p-group, and hence |H| is a multiple of p. Also the stabilizer Hs; < H, and

hence [Hs;| divides [H|, and so it is a multiple of p. Also [H : Hs;] divides |[H| and hence is
a multiple of p.



Therefore, reducing equation (2) modulo p yields

Z [H:Hs;]=1|S|—0 mod p.

SiE€S
[H:HSJ =1

But [H : Hs;] = 1 implies |[H| = [Hs;|, and so Hs; = H. Therefore every element of H is in
the stabilizer of s;, i.e.

h'Si:Si

for all h € H. Therefore s; is a fixed point of H if and only if [H : Hs;] = 1. Thus we have
# fixed points of H = Z 1= Z [H:Hs;] =S| mod p.

SiES si€S
[HZHSJZ] [HHSJZ]
Part (b) is a special case of part (a). O

1.3. Sylow theorems continued. In Lecture 20, we established Sylow’s First Theorem,
which proves the existence of Sylow p-subgroups. We couple the remaining Sylow theo-
rems together in the following result.

Theorem 5. Let G be a finite group.

(i) Any p-subgroup H < G is contained in a Sylow p-subgroup of G.
(ii) All Sylow p-subgroups of G are conjugate.
(iii) The number of Sylow p-subgroups of G is congruent to 1 modulo p.

Proof. [After S. Lang] Let H by a p-subgroup of the finite group G. Further, let P be a
Sylow p-subgroup of G, the existence of which is guaranteed by Sylow’s first theorem.
We first show that if H is contained in the normalizer of P, H < Ng(P), then H C P.

So, suppose H C N¢(P). Then we have
P < HP < Ng(P).
To see this, note that for hx € HP, we have
(hx)P(hx) ' = h(xPx ")h™' =hPh ! =P,

where the second equality holds as x € P and the third holds by assumption H C Ng(P).
Thus HP C N¢(P). Further, the above computation immediately implies that P is normal
in HP.

We now show
[HP : Pl =[H:HNP]
and use this to show that H C P. By Lagrange’s theorem we have
3) [HP| = [P| - [HP : P]
(4) H =HNP|-[H:HNP].
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Further, we have

H|P
HPI= |1|4 r|w 1|>|'
e [HP'H]:‘HP’: M :]H\-M:[H'HHP]
' Pl HNP] H| ' '
Now we use this to show H C P. Indeed, suppose otherwise. Then
HNP| < [HI.
Therefore, by (4), [H: HN P] > 1. Hence [HP : P] > 1, and therefore
[HP| > [P].

But [HP| is a power of p, as H is a p-subgroup of G and P is a Sylow p-subgroup of G. But
HP can not have larger order than P, as P is a Sylow p-subgroup of G! This contradiction
shows that our assumption was false, and hence H C P.

We now consider the general case. Let 8 be the set of all conjugates of P,
8§ ={gPg ':g € G}

Note that G acts on 8 by conjugation. Since P < Ng(P) and indeed P & Ng(P), we have
INg(P)| > [P|. Since P is a Sylow p-subgroup, the order of N (P) must not be a power of
p. We have [Ny (P) = |P|[N4(P) : P]. Hence [Ng(P) : P] must be prime to p. Therefore, by
the orbit equation (1) applied to the finite group §, it follows that [§| is not divisible by p.

Now, let H by any p-subgroup of G. Then H acts on § by conjugation. Then by Lemma
4 (a), 8 can not have zero fixed points under the action of H. Let Q be such a fixed point.
Then by definition H C Ng(Q). Note that |Q| = |P|, and hence Q is a Sylow p-subgroup
of G, as are all elements of §. Thus by the first part of this proof, H C Q. This proves the
tirst part of the theorem.

Now suppose H is a Sylow p-subgroup of G. Then [H| = |Q|, and therefore H = Q. This
proves part (ii).
Thus, when H is a Sylow p-subgroup, H has only one fixed point (as we just showed

that any fixed point of Q € 8 of H is equal to H). Hence part (iii) follows from Lemma 4
(b), and this proves the theorem. O



