
MATH 171 FALL 2008: LECTURE 21

DAGAN KARP

1. SYLOW THEOREMS CONTINUED

1.1. Normalizers. Let
H = {H 6 G}

be the set of all subgroups of a group G. Then G acts on H by conjugation,

g ·H = gHg−1.

where g ∈ G.

Indeed, note that for any g ∈ G, gHg−1 6 G. Let x, y ∈ gHg−1. Then there exist
h1, h2 ∈ H such that

x = gh1g
−1 y = gh2g

−1.

Then y−1 = gh−1
2 g−1 and

xy−1 = (gh1g
−1)(gh−1

2 g−1) = g(h1h
−1
2 )g−1 ∈ G,

where the last statement follows as h1h
−1
2 ∈ H, because H 6 G. Therefore we have a well

defined conjugation map
G×H→ H.

To verify that this is a group action, note that

1 ·H = 1H1−1 = H

for any H 6 G. Further, for any g1, g2 ∈ G,

(g1g2) ·H = (g1g2)H(g1g2)
−1

= g1g2Hg−1
2 g−1

1

= g1 · (g2Hg−1
2 )

= g1 · (g2 ·H).

Therefore G does indeed act on H. Thus the orbits of G form equivalence classes.

Definition 1. The conjugacy class of a subgroup H of a group G is the orbit of H in H under
the action of G by conjugation. It is denoted CH.
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Definition 2. The normalizer NG(H) of the subgroup H of the group G is the stabilizer of H ∈ H

under the conjugation action of G.

NG(H) = N(H) = {g ∈ G : g ·H = H}

= {g ∈ G : gHg−1 = H}.

Proposition 3. The normalizer NG(H) of H 6 G is the largest subgroup of G such that H E
NG(H).

Proof. Suppose there is a subgroup K 6 G such that

H E K 6 G.

Then by definition of normal, we have, for k ∈ K,

kHk−1 = H.

Therefore k ∈ NG(H). Thus K ⊆ NG(H). �

1.2. p-groups acting on finite sets.

Lemma 4. Let H be a p-group acting on a finite set S.

(a) The number of fixed points of H is congruent to 1 mod p.
(b) If H has exactly one fixed point, then |S| ≡ 1 mod p.

Proof. Because the orbits of S partition S, we may express S as a disjoint union of its orbits

S =
⊔

si∈S

[si].

Therefore
|S| =

∑
si∈S

|[si]|.

But the order of the orbit is equal to the index of the stabilizer! Thus |[si]| = [H : Hsi].
Thus we obtain what is called the orbit equation:

(1) |S| =
∑
si∈S

[H : Hsi].

We may split this sum into two pieces

(2) |S| =
∑
si∈S

[H:Hsi]=1

[H : Hsi] +
∑
si∈S

[H:Hsi] 6=1

[H : Hsi].

By Lagrange’s theorem, we have

|H| = |Hsi| · [H : Hsi].

But H is a p-group, and hence |H| is a multiple of p. Also the stabilizer Hsi 6 H, and
hence |Hsi| divides |H|, and so it is a multiple of p. Also [H : Hsi] divides |H| and hence is
a multiple of p.
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Therefore, reducing equation (2) modulo p yields∑
si∈S

[H:Hsi]=1

[H : Hsi] ≡ |S| − 0 mod p.

But [H : Hsi] = 1 implies |H| = |Hsi|, and so Hsi = H. Therefore every element of H is in
the stabilizer of si, i.e.

h · si = si

for all h ∈ H. Therefore si is a fixed point of H if and only if [H : Hsi] = 1. Thus we have

# fixed points of H =
∑
si∈S

[H:Hsi]=1

1 =
∑
si∈S

[H:Hsi]=1

[H : Hsi] ≡ |S| mod p.

Part (b) is a special case of part (a). �

1.3. Sylow theorems continued. In Lecture 20, we established Sylow’s First Theorem,
which proves the existence of Sylow p-subgroups. We couple the remaining Sylow theo-
rems together in the following result.

Theorem 5. Let G be a finite group.

(i) Any p-subgroup H 6 G is contained in a Sylow p-subgroup of G.
(ii) All Sylow p-subgroups of G are conjugate.

(iii) The number of Sylow p-subgroups of G is congruent to 1 modulo p.

Proof. [After S. Lang] Let H by a p-subgroup of the finite group G. Further, let P be a
Sylow p-subgroup of G, the existence of which is guaranteed by Sylow’s first theorem.
We first show that if H is contained in the normalizer of P, H 6 NG(P), then H ⊆ P.

So, suppose H ⊆ NG(P). Then we have

P E HP 6 NG(P).

To see this, note that for hx ∈ HP, we have

(hx)P(hx)−1 = h(xPx−1)h−1 = hPh−1 = P,

where the second equality holds as x ∈ P and the third holds by assumption H ⊆ NG(P).
Thus HP ⊆ NG(P). Further, the above computation immediately implies that P is normal
in HP.

We now show
[HP : P] = [H : H ∩ P]

and use this to show that H ⊆ P. By Lagrange’s theorem we have

|HP| = |P| · [HP : P](3)

|H| = |H ∩ P| · [H : H ∩ P].(4)
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Further, we have

|HP| =
|H||P|

|H ∩ P|
.

Thus
[HP : H] =

|HP|

|P|
=

|H|

|H ∩ P|
= |H| · [H : H ∩ P]

|H|
= [H : H ∩ P].

Now we use this to show H ⊆ P. Indeed, suppose otherwise. Then

|H ∩ P| < |H|.

Therefore, by (4), [H : H ∩ P] > 1. Hence [HP : P] > 1, and therefore

|HP| > |P|.

But |HP| is a power of p, as H is a p-subgroup of G and P is a Sylow p-subgroup of G. But
HP can not have larger order than P, as P is a Sylow p-subgroup of G! This contradiction
shows that our assumption was false, and hence H ⊂ P.

We now consider the general case. Let S be the set of all conjugates of P,

S = {gPg−1 : g ∈ G}.

Note that G acts on S by conjugation. Since P 6 NG(P) and indeed P $ NG(P), we have
|NG(P)| > |P|. Since P is a Sylow p-subgroup, the order of NG(P) must not be a power of
p. We have |Ng(P) = |P|[Ng(P) : P]. Hence [NG(P) : P] must be prime to p. Therefore, by
the orbit equation (1) applied to the finite group S, it follows that |S| is not divisible by p.

Now, let H by any p-subgroup of G. Then H acts on S by conjugation. Then by Lemma
4 (a), S can not have zero fixed points under the action of H. Let Q be such a fixed point.
Then by definition H ⊂ NG(Q). Note that |Q| = |P|, and hence Q is a Sylow p-subgroup
of G, as are all elements of S. Thus by the first part of this proof, H ⊂ Q. This proves the
first part of the theorem.

Now suppose H is a Sylow p-subgroup of G. Then |H| = |Q|, and therefore H = Q. This
proves part (ii).

Thus, when H is a Sylow p-subgroup, H has only one fixed point (as we just showed
that any fixed point of Q ∈ S of H is equal to H). Hence part (iii) follows from Lemma 4
(b), and this proves the theorem. �
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