MATH 171 FALL 2008: LECTURE 23

DAGAN KARP

In this lecture, we'll begin our study of modules. This lecture is largely based on Lang and Dummit\&Foote.

1. Introduction to Modules

Definition 1. Let R be a ring, and M an Abelian group. We say that M is a (left) R -module (or a module over R) if there is a multiplicative (left) action of R on M such that, for any $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $x, y \in M$, we have

$$
a \cdot(x+y)=a \cdot x+a \cdot y \quad(a+b) \cdot x=a \cdot x+b \cdot x
$$

Remark 2. By definition of action, we have

$$
(a b) \cdot x=a \cdot(b \cdot x) \quad 1 \cdot x=x
$$

where the latter holds for rings with unity. Note also that $a(-x)=-a x$ and that $0 x=0$.
Definition 3. Let M be an R-module. An additive subgroup $N \leqslant M$ is a submodule of M if $R \cdot N \subset N$, i.e., for all $a \in R, n \in N$,

$$
a \cdot n \in N .
$$

Remark 4. A submodule N of the R-module M is again an R-module, with action induced by that of R on M.

Example 5. Let R be any ring.
(1) Any ring R is itself an R -module.
(2) The zero group $\{0\}$ is an R -module for any ring R .
(3) Any Abelian group is a \mathbb{Z}-module.

Remark 6. Note that every Abelian group is a \mathbb{Z}-module and conversely. Similarly for subgroups.

Definition 7. A vector space is a module over a field.
Example 8. Let F be a field, and let $\mathrm{F}^{n}=\bigoplus_{i=1}^{n} \mathrm{~F}$. Then F^{n} is a vector space with elements

$$
\left(a_{1}, \ldots, a_{n}\right) \in F^{n}
$$

where $a_{i} \in F$ for all i. The addition and scalar multiplication are defined componentwise.
Date: December 1, 2008.

Remark 9. Let V be a vector space over the field F . Recall that a linear map, or a linear transformation, is a map of sets $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{V}$ such that, for all $\mathrm{a}, \mathrm{b} \in \mathrm{F}$ and $u, v \in \mathrm{~V}$,

$$
\mathrm{L}(\mathrm{au}+\mathrm{bv})=\mathrm{aL}(u)+b \mathrm{~L}(v)
$$

Example 10. Let V be a vector space over the field F , and let R be the set of all linear maps from V to itself. Then V is an R-module.

Example 11. Let S be a non-empty set and M an R -module. Then the set of maps $\operatorname{Map}(S, M)$ is an R-module. We've already seen that this is an Abelian group. To see the module structure, for $a \in R$ and $f: S \rightarrow M$, define $a \cdot f$ to be the map such that

$$
(a \cdot f)(s)=a \cdot(f(s))
$$

Definition 12. Let R be a commutative ring with unity, and let M be an R -module. The torsion submodule M_{tor} is given by

$$
M_{\mathrm{tor}}=\{x \in M: a \cdot x=0 \text { for some } 0 \neq a \in R\}
$$

Definition 13. Let N be a submodule of M over R . The annihilator of N is the set

$$
\{a \in R: a \cdot x=0 \text { for all } x \in M\}
$$

Remark 14. The annihilator of a submodule is an ideal of R, and $M_{\text {tor }}$ is a submodule of M.

2. BASIC PROPERTIES OF MODULES

Let M be an R module, and I, J ideals of R. Define IM by

$$
I M=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}: a_{i} \in R, x_{i} \in M, n \in \mathbb{N}\right\} .
$$

Then IM is a submodule of M. Note that we have associativity

$$
(\mathrm{IJ}) \mathrm{M}=\mathrm{I}(\mathrm{JM})
$$

and also distributivity

$$
(\mathrm{I}+\mathrm{J}) \mathrm{M}=\mathrm{I} M+\mathrm{JM}
$$

Further, if N, N^{\prime} are submodules of M, then

$$
\mathrm{I}\left(\mathrm{~N}+\mathrm{N}^{\prime}\right)=\mathrm{IN}+\mathrm{IN}^{\prime}
$$

Definition 15. Let M be an R -module and N a submodule. Define the quotient module (or factor module) of M by N to be the set of cosets M / N with R action given by, for any $a \in R$ and $x+N \in M / N$,

$$
a \cdot(x+N)=a \cdot x+N
$$

Definition 16. Let M. M^{\prime} be R-modules. A module homomorphism $f: M \rightarrow M^{\prime}$ is an additive group homomorphism such that

$$
f(a \cdot x)=a \cdot f(x)
$$

for all $a \in R$ and $x \in M$.

Remark 17. R-module homomorphisms are also called R-homomorphisms or R-linear maps.

Definition 18. An invertible module homomorphism is called a module isomorphism.
Example 19. Let M and M^{\prime} be modules.
(1) The zero map $\zeta: M \rightarrow M^{\prime}$ is a module hom.
(2) The identity map is a module hom.
(3) For any submodule $N \leqslant M$, the projection map $M \rightarrow M / N$ is a module hom.

Theorem 20 (Module Isomorphism Theorems). Let M, M^{\prime} be R-modules, and let A, B be submodules of M.
(1) Let $\mathrm{f} \phi: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be an R -hom. Then $\operatorname{Ker} \phi$ is a submodule of M and

$$
M / \operatorname{Ker} \phi \cong \phi(M) /
$$

$$
\begin{equation*}
(A+B) / B \cong A /(A \cap B) \tag{2}
\end{equation*}
$$

(3) If $A \subseteq B$, then

$$
(M / A) /(B / A) \cong M / B
$$

(4) There exists a bijection between submodules of M / A and submodules N of M containing A. The correspondence is given by

$$
\mathrm{N} \Longleftrightarrow \mathrm{~N} / A
$$

for all $\mathrm{A} \subset \mathrm{N}$.

