
MATH 171 FALL 2008: LECTURE 23

DAGAN KARP

In this lecture, we’ll begin our study of modules. This lecture is largely based on Lang
and Dummit&Foote.

1. INTRODUCTION TO MODULES

Definition 1. Let R be a ring, andM an Abelian group. We say thatM is a (left) R-module (or
a module over R) if there is a multiplicative (left) action of R on M such that, for any a, b ∈ R
and x, y ∈M, we have

a · (x+ y) = a · x+ a · y (a+ b) · x = a · x+ b · x.

Remark 2. By definition of action, we have

(ab) · x = a · (b · x) 1 · x = x,

where the latter holds for rings with unity. Note also that a(−x) = −ax and that 0x = 0.

Definition 3. Let M be an R-module. An additive subgroup N 6 M is a submodule of M if
R ·N ⊂ N, i.e., for all a ∈ R, n ∈ N,

a · n ∈ N.

Remark 4. A submoduleN of the R-moduleM is again an R-module, with action induced
by that of R onM.

Example 5. Let R be any ring.

(1) Any ring R is itself an R-module.
(2) The zero group {0} is an R-module for any ring R.
(3) Any Abelian group is a Z-module.

Remark 6. Note that every Abelian group is a Z-module and conversely. Similarly for
subgroups.

Definition 7. A vector space is a module over a field.

Example 8. Let F be a field, and let Fn =
⊕n

i=1 F. Then Fn is a vector space with elements

(a1, . . . , an) ∈ Fn

where ai ∈ F for all i. The addition and scalar multiplication are defined componentwise.
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Remark 9. Let V be a vector space over the field F. Recall that a linear map, or a linear
transformation, is a map of sets L : V → V such that, for all a, b ∈ F and u, v ∈ V ,

L(au+ bv) = aL(u) + bL(v).

Example 10. Let V be a vector space over the field F, and let R be the set of all linear maps from V

to itself. Then V is an R-module.

Example 11. Let S be a non-empty set and M an R-module. Then the set of maps Map(S,M) is
an R-module. We’ve already seen that this is an Abelian group. To see the module structure, for
a ∈ R and f : S→M, define a · f to be the map such that

(a · f)(s) = a · (f(s)).

Definition 12. Let R be a commutative ring with unity, and let M be an R-module. The torsion
submoduleMtor is given by

Mtor = {x ∈M : a · x = 0 for some 0 6= a ∈ R}.

Definition 13. Let N be a submodule ofM over R. The annihilator of N is the set

{a ∈ R : a · x = 0 for all x ∈M}.

Remark 14. The annihilator of a submodule is an ideal of R, and Mtor is a submodule of
M.

2. BASIC PROPERTIES OF MODULES

LetM be an Rmodule, and I, J ideals of R. Define IM by

IM = {a1x1 + · · ·+ anxn : ai ∈ R, xi ∈M, n ∈ N}.

Then IM is a submodule ofM. Note that we have associativity

(IJ)M = I(JM)

and also distributivity
(I+ J)M = IM+ JM.

Further, if N,N ′ are submodules ofM, then

I(N+N ′) = IN+ IN ′.

Definition 15. Let M be an R-module and N a submodule. Define the quotient module (or
factor module) ofM byN to be the set of cosetsM/N with R action given by, for any a ∈ R and
x+N ∈M/N,

a · (x+N) = a · x+N.

Definition 16. Let M.M ′ be R-modules. A module homomorphism f : M → M ′ is an
additive group homomorphism such that

f(a · x) = a · f(x)

for all a ∈ R and x ∈M.
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Remark 17. R-module homomorphisms are also called R-homomorphisms or R-linear
maps.

Definition 18. An invertible module homomorphism is called a module isomorphism.

Example 19. LetM andM ′ be modules.

(1) The zero map ζ : M→M ′ is a module hom.
(2) The identity map is a module hom.
(3) For any submodule N 6 M, the projection mapM→M/N is a module hom.

Theorem 20 (Module Isomorphism Theorems). Let M,M ′ be R-modules, and let A,B be
submodules ofM.

(1) Let fφ : M→M ′ be an R-hom. Then Kerφ is a submodule ofM and

M/Kerφ ∼= φ(M)/

(2)
(A+ B)/B ∼= A/(A ∩ B)

(3) If A ⊆ B, then
(M/A)/(B/A) ∼= M/B.

(4) There exists a bijection between submodules of M/A and submodules N of M containing
A. The correspondence is given by

N⇐⇒ N/A

for all A ⊂ N.

3


