MATH 171 FALL 2008: LECTURE 23

DAGAN KARP

In this lecture, we'll begin our study of modules. This lecture is largely based on Lang and Dummit&Foote.

1. INTRODUCTION TO MODULES

Definition 1. *Let* R *be a ring, and* M *an Abelian group. We say that* M *is a* (left) R-module (or a module over R) if there is a multiplicative (left) action of R *on* M *such that, for any* $a, b \in R$ *and* $x, y \in M$ *, we have*

 $a \cdot (x + y) = a \cdot x + a \cdot y$ $(a + b) \cdot x = a \cdot x + b \cdot x.$

Remark 2. By definition of action, we have

$$(ab) \cdot x = a \cdot (b \cdot x)$$
 $1 \cdot x = x,$

where the latter holds for rings with unity. Note also that a(-x) = -ax and that 0x = 0.

Definition 3. *Let* M *be an* R*-module. An additive subgroup* $N \leq M$ *is a* submodule *of* M *if* $R \cdot N \subset N$, *i.e., for all* $a \in R$, $n \in N$,

 $a \cdot n \in N$.

Remark 4. A submodule N of the R-module M is again an R-module, with action induced by that of R on M.

Example 5. *Let* R *be any ring.*

- (1) Any ring R is itself an R-module.
- (2) The zero group $\{0\}$ is an R-module for any ring R.
- (3) Any Abelian group is a \mathbb{Z} -module.

Remark 6. Note that every Abelian group is a \mathbb{Z} -module and conversely. Similarly for subgroups.

Definition 7. *A* vector space *is a module over a field.*

Example 8. Let F be a field, and let $F^n = \bigoplus_{i=1}^n F$. Then F^n is a vector space with elements

 $(\mathfrak{a}_1,\ldots,\mathfrak{a}_n)\in F^n$

where $a_i \in F$ for all i. The addition and scalar multiplication are defined componentwise.

Date: December 1, 2008.

Remark 9. Let V be a vector space over the field F. Recall that a linear map, or a linear transformation, is a map of sets $L : V \to V$ such that, for all $a, b \in F$ and $u, v \in V$,

$$L(au + bv) = aL(u) + bL(v).$$

Example 10. *Let* V *be a vector space over the field* F*, and let* R *be the set of all linear maps from* V *to itself. Then* V *is an* R*-module.*

Example 11. Let S be a non-empty set and M an R-module. Then the set of maps Map(S, M) is an R-module. We've already seen that this is an Abelian group. To see the module structure, for $a \in R$ and $f: S \to M$, define $a \cdot f$ to be the map such that

$$(\mathbf{a} \cdot \mathbf{f})(\mathbf{s}) = \mathbf{a} \cdot (\mathbf{f}(\mathbf{s})).$$

Definition 12. *Let* R *be a commutative ring with unity, and let* M *be an* R*-module. The* torsion submodule M_{tor} *is given by*

$$M_{tor} = \{x \in M : a \cdot x = 0 \text{ for some } 0 \neq a \in R\}.$$

Definition 13. Let N be a submodule of M over R. The annihilator of N is the set

$$\{a \in R : a \cdot x = 0 \text{ for all } x \in M\}.$$

Remark 14. The annihilator of a submodule is an ideal of R, and M_{tor} is a submodule of M.

2. BASIC PROPERTIES OF MODULES

Let M be an R module, and I, J ideals of R. Define IM by

$$IM = \{a_1x_1 + \dots + a_nx_n : a_i \in R, x_i \in M, n \in \mathbb{N}\}.$$

Then IM is a submodule of M. Note that we have associativity

$$(IJ)M = I(JM)$$

and also distributivity

$$(I+J)M = IM + JM.$$

Further, if N, N' are submodules of M, then

$$I(N + N') = IN + IN'.$$

Definition 15. *Let* M *be an* R*-module and* N *a submodule. Define the* quotient module (or factor module) *of* M *by* N *to be the set of cosets* M/N *with* R *action given by, for any* $a \in R$ *and* $x + N \in M/N$,

$$\mathbf{a} \cdot (\mathbf{x} + \mathbf{N}) = \mathbf{a} \cdot \mathbf{x} + \mathbf{N}.$$

Definition 16. Let M.M' be R-modules. A module homomorphism $f : M \to M'$ is an additive group homomorphism such that

$$f(\mathbf{a} \cdot \mathbf{x}) = \mathbf{a} \cdot f(\mathbf{x})$$

for all $a \in R$ and $x \in M$.

Remark 17. R-module homomorphisms are also called R-homomorphisms or R-linear maps.

Definition 18. An invertible module homomorphism is called a module isomorphism.

Example 19. Let M and M' be modules.

- (1) The zero map $\zeta : M \to M'$ is a module hom.
- (2) The identity map is a module hom.
- (3) For any submodule $N \leq M$, the projection map $M \to M/N$ is a module hom.

Theorem 20 (Module Isomorphism Theorems). *Let* M, M' *be* R*-modules, and let* A, B *be submodules of* M.

(1) Let $f\phi : M \to M'$ be an R-hom. Then Ker ϕ is a submodule of M and

$$M/\operatorname{Ker} \phi \cong \phi(M)/$$

(2)

$$(A+B)/B \cong A/(A \cap B)$$

(3) If $A \subseteq B$, then

 $(M/A)/(B/A) \cong M/B.$

(4) There exists a bijection between submodules of M/A and submodules N of M containing A. The correspondence is given by

$$N \iff N/A$$

for all $A \subset N$ *.*