MATH 171 FALL 2008: LECTURE 24

DAGAN KARP

1. Modules continued

Let V be a vector space over the field K , and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ a linear transformation. Then V is endowed with the structure of a $K[x]$ module as follows. To define the action of $K[x]$ on V, let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in K[x]$ and $v \in V$. Then define

$$
f(x) \cdot v=\sum_{i=0}^{n} a_{i} \mathrm{~T}^{\mathrm{i}}(v),
$$

where T^{i} is T composed with itself i-times, and $T^{0}=I$, the identity map on V.
To see that this is an action, note that

$$
1 \cdot v=1 \mathrm{~T}^{0}(v)=\mathrm{I}(v)=v
$$

and, for f as above and $g(x)=\sum_{j=1}^{m} b_{j} x^{j} \in K[x]$ and $v \in \mathrm{~V}$ we have

$$
\begin{aligned}
f(x) \cdot(g(x) \cdot v) & =f(x) \cdot\left(\sum_{j=0}^{m} b_{j} T^{j}(v)\right) \\
& =\sum_{i=0}^{n} a_{i} T^{i}\left(\sum_{j=0}^{m} b_{j} T^{j}(v)\right) \\
& =\sum_{i+j=0}^{n+m} a_{i} b_{j} T^{i+j}(v) \\
& =(f(x) g(x)) \cdot v .
\end{aligned}
$$

WLOG assume $n \leqslant m$ and let $a_{i}=0$ for $i>n$. Then we compute

$$
\begin{aligned}
(f(x)+g(x))(v) & =\left(\sum_{k=0}^{m}\left(a_{k}+b_{k}\right) x^{k}\right) \cdot v \\
& =\sum_{k=0}^{m}\left(a_{k}+b_{k}\right) T^{k}(v) \\
& =\sum_{k=0}^{m} a_{k} T^{k}(v)+\sum_{k=0}^{m} b_{k} T^{k}(v) \\
& =f(x) \cdot v+g(x) \cdot v .
\end{aligned}
$$

Finally, we have, for $u, v \in \mathrm{~V}$ and $\mathrm{f} \in \mathrm{K}[\mathrm{x}]$ as above,

$$
\begin{aligned}
f(x) \cdot(u+v) & =\sum_{i=0}^{n} a_{i} T^{i}(u+v) \\
& =\sum_{i=0}^{n} a_{i}\left(T^{i}(u)+T^{i}(v)\right) \\
& =\sum_{i=0}^{n} a_{i} T^{i}(u)+\sum_{i=0}^{n} a_{i} T^{i}(v) \\
& =f(x) \cdot(u)+f(x) \cdot(v) .
\end{aligned}
$$

Thus, together a vector space V over K and a linear transformation T provide the data for a $\mathrm{K}[x]$-module. But the converse is true as well. Given any $\mathrm{K}[\mathrm{x}]$-module W , it is immediate that W is also a K-module, as $K \subset K[x]$. In other words W is a vector space over K. Moreover, we define a linear transformation $T: W \rightarrow W$ via the action of $x \in K[x]$. Define T: W \rightarrow Wy

$$
\mathrm{T}(w)=x \cdot w
$$

for any $w \in W$. Then for $\mathrm{a}, \mathrm{b} \in \mathrm{K}$ and $w, w^{\prime} \in W$,

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{a} w+\mathrm{b} w^{\prime}\right) & =x \cdot\left(\mathrm{aw}+\mathrm{b} w^{\prime}\right) \\
& =x \cdot(\mathrm{aw})+x \cdot\left(\mathrm{~b} w^{\prime}\right) \\
& =(x a) \cdot(w)+(x b) \cdot\left(w^{\prime}\right) \\
& =\mathrm{ax} \cdot w+\mathrm{bx} \cdot w^{\prime} \\
& =\mathrm{aT}(w)+\mathrm{bT}\left(w^{\prime}\right)
\end{aligned}
$$

Thus T is indeed a linear transformation. Since the action of K and x on V uniquely determine the action of any element of $K[x]$ on V, we have a bijection
$\{\mathrm{K}[\mathrm{x}]$-modules $\} \longleftrightarrow$ \{ vector spaces over K together with a linear transformation \}

2. CLASSIFICATION OF ALL MODULES: THE FUNDAMENTAL THEOREM

Any finitely generated module over a PID is isomorphic to a direct sum of finitely many cyclic modules.

Theorem 1 (Fundamental Theorem of Finitely Generated Modules). Let M be a finitely generated module over the PID R. Then

$$
M \cong R^{r} \oplus R /\left(p_{i}^{\alpha_{1}}\right) \oplus R /\left(p_{2}^{\alpha_{2}}\right) \oplus \cdots \oplus R /\left(p_{l}^{\alpha_{l}}\right)
$$

where $r, l \geqslant 0$ are a non-negative integers and $p_{i}^{\alpha_{i}}$ are positive powers of not necessarily distinct primes in R .

Corollary 2 (Fundamental Theorem of Finitely Generated Abelian Groups). Let G be a finitely generated Abelian group. Then

$$
\mathrm{G} \cong \mathbb{Z}^{r} \oplus \mathbb{Z}_{\mathrm{p}_{1}^{n_{1}}} \oplus \mathbb{Z}_{\mathfrak{p}_{2}^{n_{2}}} \oplus \cdots \oplus \mathbb{Z}_{\mathfrak{p}_{l}^{n_{1}}}
$$

for some non negative integers r, l and n_{i} and prime numbers p_{i}.
Corollary 3. Let V be a finite dimensional vector space over K , and let T be a linear transformation. If K contains all of the eigenvalues of T , then there exists a basis of V with respect to which the matrix corresponding to T is in Jordan canonical form.

