
MATH 171 FALL 2008: LECTURE 8

DAGAN KARP

ABSTRACT. In today’s lecture we’ll be introduced to and discuss the isomorphism theo-
rems. Along the way we’ll formally meet several new concepts, including direct products
of groups, inner automorphisms, conjugacy classes and the centralizer of a group.

1. THE ISOMORPHISM THEOREMS

Given a homomorphism φ : G → G ′, how far is it from being an isomorphism? The
difference between homomorphism and isomorphism is bijectivity. So, well,φmay not be
surjective. But, any map is onto its image by definition, so we may restrict our attention
there. Also, our given homomorphism may not be injective. As we have seen, this is
equivalent to the statement that Ker(φ) may be non-trivial. Well, Ker(φ) is a normal
subgroup of G (always), and the resulting quotient group G/Ker(φ) has the effect of
trivializing the kernel!

Theorem 1 (The First Isomorphism Theorem, AKA the Homomorphsim Theorem). Let
φ : G→ G ′ be a homomorphism of groups. Then Kerφ E G, Im(φ) 6 G ′ and

G/Kerφ ∼= Im(φ).

Before we prove this result, let’s take a look at an example.

Example 2. Consider the map
φ : Z→ Z2,

given by
n 7→ n mod 2.

Then

Ker(φ) = {n ∈ Z : n mod 2 ≡ 0 mod 2}

= {n ∈ Z : n ≡ 0 mod 2}

= {n ∈ Z : n ∈ 2Z}

= 2Z.

Thus, the first isomorphisms theorem yields the previously discovered statement

Z/2Z ∼= Z2.
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Proof. In previous lectures and homework we’ve already done the heavy lifting for this
proof. In particular, we already know that Ker(φ) E G and Im(φ) 6 G ′. The rest is now
elementary.

For the sake of convenience, let K = Ker(ψ) and I = Im(φ). We define a map

ψ : G/K→ I

by
ψ(Kg) = φ(g)

for any g ∈ G. First, we note that ψ is a homomorphism.

ψ(Kx · Ky) = ψ(Kxy) ( by definition of G/K)

= φ(xy)

= φ(x)φ(y) ( because φ is a homomorphism )

= ψ(Kx)ψ(Ky).

Also, φ is injective. Indeed, if ψ(Kx) = ψ(Ky), then φ(x) = φ(y), and hence

1 = φ(x)φ(y)−1 = φ(x)φ(y−1) = φ(xy−1).

Therefore
xy−1 ∈ Ker(φ) = K.

Thus Kxy−1 = K and therefore Kx = Ky. Therefore ψ is injective.

Finally, ψ is surjective. Let a ∈ Im(φ). Then there is some x ∈ G such that a = φ(x).
But Kx ∈ G/K for any x ∈ G. Then ψ(Kx) = φ(x) = a. �

Definition 3. Let A and B be groups. The direct product of A and B is a group which as a set is
given by

A⊕ B = {(a, b) : a ∈ A, b ∈ B},

and where multiplication is defined by

(a, b) ∗ (a ′, b ′) = (aa ′, bb ′).

It’s an easy and fun exercise to note that A⊕ B is indeed a group.

Example 4. Consider the map φ : Z2 ⊕ Z2 → Z2 given by

φ(a, b) = a.

Then
Ker(φ) = {(a, b) : a = 0} = {(0, 0), (0, 1)}.

Note that φ is onto. Therefore we have

Z2 ⊕ Z2/Ker(φ) ∼= Z2.

Definition 5. The centralizer Z(G) of a group G is the set of all elements that commute with all
elements of G,

Z(G) = {x ∈ G : xg = gx for all elements g ∈ G}.

2



Proposition 6. For any group G, the centralizer is a subgroup Z(G) 6 G.

Proof. Note that 1 ∈ Z(G). Further if x ∈ Z(G), then for g ∈ G

xg = gx⇒ xgx−1 = g⇒ gx−1 = x−1g,

so x−1 ∈ Z(G). Also, if y ∈ Z(G), then

xyg = x(yg) = x(gy) = (xg)y = (gx)y = g(xy) = gxy.

So Z(G) is closed, has inverses and the identity. �

Definition 7. For elements x and g in a group G, the conjugate of g by x is xgx−1 ∈ G.

Proposition 8. The relation g ∼ g ′ if and only if g = xg ′x−1 for some x ∈ G is an equivalence
relation on the group G.

Proof. Clearly g ∼ g by conjugating with the identity. Also, g ∼ g ′ implies there is some
x ∈ G such that

g = xg ′x−1 ⇒ g ′ = x−1gx,

and hence g ′ ∼ g. Finally, g ∼ g ′ and g ′ ∼ g ′′ imply g = xgx−1 and g ′ = yg ′′y−1 for some
x and y in G. Thus

g = xg ′x−1 = xyg ′′y−1x−1 = (xy)g ′′(xy)−1,

and hence g ∼ g ′′.

Definition 9. The conjugacy class of an element g of a group G is the equivalence class of g in
the above equivalence relation.

Definition 10. For an element x in the group G, the inner automorphism of G induced by x is
the map

Tx : G→ G

given by
Tx(g) = xgx−1.

Remark 11. Note that Tx is indeed an automorphisms of G. It is elementary to check that
Tx is a homomorphism, and its inverse is given by Tx−1 .

Proposition 12. The set of all inner automorphisms of a groupG form a group under composition
denoted

Inn(G) = {Tx : x ∈ G}.

Proof. The proof is elementary and left to the reader.

Proposition 13. For any group G, we have

G/Z(G) ∼= Inn(G).
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Proof. Consider the map ψ : G→ Inn(G) given by

x 7→ Tx.

Note that for g ∈ G,

ψ(xy)(g) = Txy(g) = (xy)g(xy)−1 = x(ygy−1)x−1 = Tx(Ty(g)) = (Tx◦Ty)(g) = (ψ(x)◦ψ(y))(g).

Henceψ is a homomorphism. Furtherψ is immediately seen to be surjective. Let’s denote
the identity map on G, which is the identity element of Inn(G), by IG. Then

Ker(ψ) = {x ∈ G : ψ(x) = IG}

= {x ∈ G : Tx = IG}

= {x ∈ G : xgx−1 = g for all g ∈ G}

= {x ∈ G : xg = gx for all g ∈ G}

= Z(G).

Therefore, by the first isomorphism theorem, we have

G/Ker(φ) ∼= Im(psi),

i.e.
G/Z(G) ∼= Inn(G).

Definition 14. For a subset A ⊂ G of a group G, the normalizer of A in G is

NG(A) = {g ∈ G : gAg−1 = A}.

Theorem 15 (Second Isomorphism Theorem). Let G be a group, and suppose A and B are
subgroups such that A 6 NG(B). Then AB 6 G, B E AB, A ∩ B E A and

AB/B ∼= A/(A ∩ B).

Proof. The proof is an application of the first isomorphisms theorem.

Theorem 16 (Third Isomorphism Theorem). Let H and K be normal subgroups of G and
H 6 K. Then H E K, K/H E G/H and

(G/H)/(K/H) ∼= G/K.
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