MATH 171 FALL 2008: CLASS 10

DAGAN KARP

Abstract

The goal of Class 10 is to gain an introduction to rings: definitions and basic examples.

0.1. Exercise. Complete the following definition.

Definition 1. A ring $(\mathrm{R}+, \cdot)$ is a set together with two binary operations, called addition and multiplication respectively, satisfying the following three axioms.
(1) The set $(R,+)$ together with addition is an Abelian group.

Definition 2. The ring R is commutative if multiplication is commutative.
Definition 3. The ring R has an identity, or unity or contains a 1 if there is an element $1 \in \mathbb{R}$ such that for all $a \in \mathbb{R}$,

$$
1 \cdot a=a \cdot 1=a .
$$

Remark 4. By abuse of notation, multiplication • may be denoted by simple juxtaposition, e.g. $a \cdot b=a b$.
0.2. Exercise. Complete the argument in this remark.

Remark 5. For a ring with 1 , condition (1), commutativity under addition, is redundant. Indeed, note that for any $a, b \in \mathbb{R}$,

Definition 6. A ring with identity is a division ring if every non-zero element has a multiplicative inverse.

Definition 7. A field is a commutative division ring.
0.3. Exercise. Prove that each of the following is an example of a ring.

Example 8. The real numbers \mathbb{R} form a ring under addition and multiplication of real numbers. In fact, \mathbb{R} is a field.

Example 9 (The zero ring). Let $\mathrm{R}=\{0\}$. Then R is a ring and is called the zero ring. Indeed, all of the axioms of a ring are trivially satisfied.

$$
0+0=0 \quad 0 \cdot 0=0
$$

Example 10 (Trivial rings). For any Abelian group G, + , consider the ring ($\mathrm{G},+, \cdot$), where multiplication is given by

$$
a \cdot b=0
$$

for any $\mathrm{a}, \mathrm{b} \in \mathrm{G}$.
Example 11. The integers \mathbb{Z} form a ring under usual operations of addition and multiplication. Note that $\mathbb{Z}-\{0\}$ is not a group under multiplication! The other number rings are indeed rings as well: \mathbb{Q}, \mathbb{C}.

Example 12. $\mathbb{Z} / \mathrm{n} \mathbb{Z}$ is a ring under addition and multiplication modulo n :

$$
\begin{aligned}
a+b & =(a+b) \quad \bmod n \\
a \cdot b & =(a b) \bmod n
\end{aligned}
$$

Example 13. The quaternions are defined by

$$
\mathbb{H}=\left\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}, \mathfrak{i}^{2}=\mathfrak{j}^{2}=k^{2}=-1, j k=-k j=i, k i=-i k=j\right\}
$$

and they form a ring, where it is assumed that real coefficients commute with the distinguished elements $\mathfrak{i}, \mathfrak{j}, \mathrm{k}$.

Example 14. Let X be a set and A be a ring. The set

$$
R=\{f: X \rightarrow A: f \text { is a map of sets }\}
$$

is a ring under pointwise addition and multiplication:

$$
\begin{aligned}
(f \cdot g)(x) & =f(x) \cdot g(x) \\
(f+g)(x) & =f(x)+g(x)
\end{aligned}
$$

0.4. Exercise. Prove the following proposition.

Proposition 15. Let R be a ring, and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$.
(1) $0 a=a 0=0$
(2) $(-a) b=a(-b)=-(a b)$, where $-(a)$ is the additive inverse of a.
(3) $(-a)(-b)=a b$
(4) If R has identity 1 , then it is unique and $-a=(-1) a$.

Definition 16. A nonzero element a of a ring R is a zero divisor if there is a non-zero $0 \neq b \in R$ such that $\mathrm{ab}=0$ or $\mathrm{ba}=0$.

Definition 17. Let R be a ring with identity. An element a of R is an unit if has a multiplicative inverse, i.e. there is some $b \in R$ such that

$$
a b=b a=1
$$

The set of units of R is denoted R^{\times}.
Definition 18. An integral domain is a commutative ring with identity which has no zero divisors.
0.5. Exercise. Prove the following proposition.

Proposition 19. Let R be an integral domain, and let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$. If

$$
a b=a c
$$

then $\mathrm{a}=0$ or $\mathrm{b}=\mathrm{c}$.
0.6. Exercise. Answer the questions posed in the following exercises.

Example 20. Which of the following are rings, integral domains, division rings or fields?
(1) \mathbb{N}
(2) $2 \mathbb{Z}$
(3) $\mathbb{Z} / 3 \mathbb{Z}$
(4) $\mathbb{Z} / n \mathbb{Z}$
(5) \mathbb{Q}

Example 21. What are the units of $\mathbb{Z} / \mathrm{n} \mathbb{Z}$?

