MATH 171 FALL 2008: CLASS 10

DAGAN KARP

ABSTRACT. The goal of Class 10 is to gain an introduction to rings: definitions and basic examples.

0.1. Exercise. Complete the following definition.

Definition 1. A ring $(R+, \cdot)$ is a set together with two binary operations, called addition and *multiplication respectively, satisfying the following three axioms.*

The set (R, +) together with addition is an <u>Abelian</u> group.
(2)
(3)

Definition 2. The ring R is commutative if multiplication is commutative.

Definition 3. *The ring* R *has an* identity, *or* unity *or* contains a 1 *if there is an element* $1 \in \mathbb{R}$ *such that for all* $a \in \mathbb{R}$ *,*

$$1 \cdot a = a \cdot 1 = a.$$

Remark 4. By abuse of notation, multiplication \cdot may be denoted by simple juxtaposition, e.g. $a \cdot b = ab$.

0.2. Exercise. Complete the argument in this remark.

Remark 5. For a ring with 1, condition (1), commutativity under addition, is redundant. Indeed, note that for any $a, b \in \mathbb{R}$,

Definition 6. *A ring with identity is a* division ring *if every non-zero element has a multiplicative inverse.*

Definition 7. *A* field *is a commutative division ring.*

Date: October 5, 2008.

0.3. **Exercise.** Prove that each of the following is an example of a ring.

Example 8. *The real numbers* \mathbb{R} *form a ring under addition and multiplication of real numbers. In fact,* \mathbb{R} *is a field.*

Example 9 (The zero ring). Let $R = \{0\}$. Then R is a ring and is called the zero ring. Indeed, all of the axioms of a ring are trivially satisfied.

$$0 + 0 = 0 \qquad \qquad 0 \cdot 0 = 0$$

Example 10 (Trivial rings). For any Abelian group G, +, consider the ring $(G, +, \cdot)$, where *multiplication is given by*

 $a \cdot b = 0$

for any $a, b \in G$ *.*

Example 11. The integers \mathbb{Z} form a ring under usual operations of addition and multiplication. Note that $\mathbb{Z} - \{0\}$ is not a group under multiplication! The other number rings are indeed rings as well: \mathbb{Q}, \mathbb{C} .

Example 12. $\mathbb{Z}/n\mathbb{Z}$ *is a ring under addition and multiplication modulo* n*:*

$$a + b = (a + b) \mod n$$

 $a \cdot b = (ab) \mod n$

Example 13. The quaternions are defined by

 $\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1, jk = -kj = i, ki = -ik = j\},$

and they form a ring, where it is assumed that real coefficients commute with the distinguished elements i, j, k.

Example 14. Let X be a set and A be a ring. The set

 $R = \{f : X \to A : f \text{ is a map of sets } \}$

is a ring under pointwise addition and multiplication:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$
$$(f + g)(x) = f(x) + g(x).$$

0.4. Exercise. Prove the following proposition.

Proposition 15. *Let* R *be a ring, and* $a, b \in R$ *.*

- (1) 0a = a0 = 0
- (2) (-a)b = a(-b) = -(ab), where -(a) is the additive inverse of a.
- (3) (-a)(-b) = ab
- (4) If R has identity 1, then it is unique and -a = (-1)a.

Definition 16. A nonzero element a of a ring R is a zero divisor if there is a non-zero $0 \neq b \in R$ such that ab = 0 or ba = 0.

Definition 17. Let R be a ring with identity. An element a of R is an unit if it has a multiplicative inverse, i.e. there is some $b \in R$ such that

$$ab = ba = 1.$$

The set of units of R *is denoted* R^{\times} *.*

Definition 18. An integral domain is a commutative ring with identity which has no zero divisors.

0.5. **Exercise.** Prove the following proposition.

Proposition 19. Let R be an integral domain, and let $a, b, c \in R$. If

ab = ac,

then a = 0 or b = c.

0.6. Exercise. Answer the questions posed in the following exercises.

Example 20. Which of the following are rings, integral domains, division rings or fields?

- (1) ℕ
- (2) 2Z
- (3) **ℤ**/3**ℤ**
- (4) $\mathbb{Z}/n\mathbb{Z}$
- (5) Q

Example 21. What are the units of $\mathbb{Z}/n\mathbb{Z}$?