MATH 171 FALL 2008: CLASS 11

DAGAN KARP

Abstract. In Class 11, we study examples of rings: polynomials, matrices and group rings.

1. Polynomial rings (after P. Grillet)

Intuitively, a polynomial in one indeterminate x and coefficients in a ring R is a linear combination

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

of powers of x with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in R$.
But what is x ? What is a variable or an indeterminate? Note that x acts as a place holder, and that the polynomial is determined by its coefficients!

Definition 1. A polynomial with one indeterminate and coefficients in a ring R is an infinite sequence

$$
a=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)
$$

of elements of R such that $a_{n}=0$ for almost all n.
Remark 2. To say that $a_{n}=0$ for almost all n is to say that there are only a finite number of n such that $a_{n} \neq 0$. In other words, the set

$$
\left\{n \in \mathbb{N} \cup\{0\}: a_{n} \neq 0\right\}
$$

is finite. Or equivalently, there exists some $N>0$ such that $a_{i}=0$ for all $i>N$.
We may define addition of polynomials componentwise,

$$
\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)+\left(b_{1}, b_{2}, \ldots, b_{n}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}, \ldots\right)
$$

In other words

$$
a+b=c
$$

where $c_{n}=a_{n}+b_{n}$.
Multiplication is defined by

$$
a b=c \quad \text { where } \quad c_{n}=\sum_{i+j=n} a_{i} b_{j}
$$

Date: October 7, 2008.
1.1. Exercise. Let $a(x)=(x+1)^{2}$ be polynomial in one indeterminate and integer coefficients. Show that f is a polynomial according to the above definition. If $b(x)=x-1$, compute $a b$ according to the rules for multiplying polynomials. Does this agree with a direct computation of $a(x) \cdot b(x)$?

Proposition 3. When R is a ring, polynomials with one indeterminate and coefficients in R form a ring, denoted $\mathrm{R}[\mathrm{x}]$. If R is commutative, then $\mathrm{R}[\mathrm{x}]$ is commutative.
1.2. Exercise. Prove this proposition.

Definition 4. The indeterminate x in $R[x]$ is defined by

$$
x=(0,1,0,0, \ldots, 0, \ldots)
$$

Now that x is defined, we can write polynomials in familiar form

$$
\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

if $a_{i}=0$ for all $i>n$.
1.3. Exercise. In order to prove the above statement, calculate x^{2} in $R[x]$, using the definition of the indeterminate x above and our knowledge of multiplication in $R[x]$. In general, what is x^{n} ?

Definition 5. The degree of a non-zero polynomial $a(x) \in R[x]$ is the largest n such that $a_{n} \neq 0$. Then a_{n} is the leading coefficient of a and $a_{n} x^{n}$ is the leading term of a.

Proposition 6. Let R be an integral domain, and let $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x})$ be two non-zero polynomials in $R[x]$.
(1) $\operatorname{deg}(a b)=\operatorname{deg}(a)+\operatorname{deg}(b)$
(2) The units of $R[x]$ are the units of R.
(3) $R[x]$ is an integral domain.
1.4. Exercise. Prove this proposition.

2. Matrix Rings

Definition 7. For a ring R and $n \in \mathbb{N}$, let $M_{n}(R)$ denote the set of all $n \times n$ matrices with entries in R. For a matrix $A \in M_{n} R$, we denote by $A_{i, j}$ the entry of A in row i and column j.

We may add and multiply matrices. Addition is defined componentwise,

$$
A+B=C
$$

where

$$
C_{i, j}=A_{i, j}+B_{i, j} .
$$

Multiplication is the standard matrix multiplication:

$$
(A B)_{i, j}=\sum_{k=1}^{n} A_{i, k} B_{k, j}
$$

