MATH 171 FALL 2008: LECTURE 13

DAGAN KARP

1. Properties of ideals

Throughout these notes, let R be a ring with 1.

Definition 1. *Let* $A \subset R$ *be a subset. Then* the (left) ideal generated by A *is the smallest (left) ideal of* R *containing* A*, and is denoted* (A).

Remark 2. Note that (A) is the intersection of all ideals I containing A.

$$(A) = \bigcap_{A \subset I} I$$

This intersection is nonempty as R is an ideal of itself containing A, and the intersection of nonempty ideals is an ideal.

Definition 3. *We define the notation* RA *by:*

$$RA = \{r_1a_1 + r_2a_2 + \cdots + r_na_n : r_i \in R, a_i \in A, n \in \mathbb{Z}\}.$$

Proposition 4. *If* R *is commutative, then* (A) = RA.

- 1.1. **Exercise.** Prove this proposition in the following steps.
 - (1) Show that RA is closed under addition and left multiplication by element of R.
 - (2) Show that RA contains A.
 - (3) Conclude that RA is an ideal containing A.
 - (4) Suppose that J is an ideal containing A. Show that $RA \subset J$.
 - (5) Conclude that RA is the left ideal generated by A.

Date: October 15, 2008.

Remark 5. If R is commutative, then

$$AR = RA = (A)$$
.

Definition 6. An ideal generated by a single element is called an principal ideal, and an ideal generated by a finite set is called a finitely generated ideal.

- 1.2. **Exercise.** Consider the finitely generated ideal (2, x) in $\mathbb{Z}[x]$.
 - (1) What do the elements of (2, x) look like?
 - (2) Note that (2, x) is a proper ideal, i.e. $(2, x) \neq \mathbb{Z}[x]$.
 - (3) Show that (2, x) is not a principal ideal. Hint: Suppose otherwise, then (2, x) = (a(x)) for some $a(x) \in \mathbb{Z}[x]$.

Definition 7. A proper ideal M of a ring R is maximal if whenever I is an ideal of R and M \subset I \subset R, then M = I or I = R.

Definition 8. A proper ideal P of a commutative ring R is prime if $ab \in P$ implies $a \in P$ or $b \in P$ for any a, bin R.

1.3. Exercise.

- (1) Show that the ideal $n\mathbb{Z}$ of \mathbb{Z} is prime if and only if n is prime.
- (2) Inspect the lattice of subgroups of $\mathbb{Z}/36\mathbb{Z}$ and show that (2) and (3) are maximal ideals.
- (3) Show that the ideal $(x^2 + 1)$ is not prime in $\mathbb{Z}_2[x]$.