MATH 171 FALL 2008: LECTURE 14

DAGAN KARP

1. Properties of Ideals continued

Definition 1. A proper ideal M of a ring R is maximal if whenever I is an ideal of R and $M \subset$ $\mathrm{I} \subset \mathrm{R}$, then $\mathrm{M}=\mathrm{I}$ or $\mathrm{I}=\mathrm{R}$.

Definition 2. A proper ideal P of a commutative ring R is prime if $\mathrm{ab} \in \mathrm{P}$ implies $\mathrm{a} \in \mathrm{P}$ or $\mathrm{b} \in \mathrm{P}$ for any $\mathrm{a}, \mathrm{b} \in \mathrm{R}$.

1.1. Exercise.

(1) Show that the ideal $n \mathbb{Z}$ of \mathbb{Z} is prime if and only if n is prime.
(2) Inspect the lattice of subgroups of $\mathbb{Z} / 36 \mathbb{Z}$ and show that (2) and (3) are maximal ideals.
(3) Show that the ideal $\left(x^{2}+1\right)$ is not prime in $\mathbb{Z}_{2}[x]$.

Theorem 3. Let R be a commutative ring with unity and let $A \subset R$ be an ideal. Then R / A is an integral domain if and only if A is prime.

Proof. Suppose that R / A is an integral domain. Let $a, b \in R$ and suppose that $a \cdot b \in A$. We must show that $a \in A$ or $b \in A$.

We compute

$$
(a+A)(b+A)=(a b)+A=A=0+A
$$

which is the additive identity in R / A. But R / A is an integral domain. Therefore $a+A=A$ or $b+A=A$. Therefore $a \in A$ or $b \in A$.

Conversely, suppose that A is prime, and let $a+A, b+A \in R / A$ be such that ($a+$ $A)(b+A)=a b+A=A$. Then $a b \in A$. But A is prime. Thus $a \in A$ or $b \in A$. Thus $a+A=0 \in R / A$ or $b+A=0 \in R / A$. Hence R / A is an integral domain.

Theorem 4. Let R be a commutative ring with unity and let A be an ideal of R. Then R / A is a field if and only if A is maximal.

Proof. Suppose that R / A is a field. Let B be an ideal of R that properly contains A,

$$
A \varsubsetneqq B \subseteq R .
$$

We must show that $B=R$.
First, there exists $b \in B$ such that $b \notin A$. Then $b+A$ is a non-zero element of R / A. But R / A is a field, hence $b+A$ must have a multiplicative inverse, i.e. there exists $c \in R$ such that

$$
(b+A)(c+A)=b c+A=1+A
$$

where the latter is the multiplicative identity of R / A. Therefore $1-b c \in A \subset B$. But $b c \in B$ since B is an ideal. Thus

$$
(1-b c)+b c=1 \in B
$$

Therefore $B=R$.
Conversely, suppose that A is maximal. We wish to show that R / A is a field. It is easily seen to be a commutative ring with unity. Our goal is to show that every non zero element has a multiplicative inverse. Every non zero element of R / A is of the form $b+A$ for some $b \in R-A$. Choose and fix such an element b.

Consider the following subset $B \subset R$ given by

$$
B=\{b r+a: r \in R, a \in A\} .
$$

Claim. B is an ideal of R properly containing A. Indeed,

$$
b r+a-\left(b r^{\prime}+a^{\prime}\right)=b\left(r-r^{\prime}\right)+\left(a-a^{\prime}\right) \in B
$$

so B is a subgroup of $(R,+)$. Further, multiplication is associative in B as it is in R. For any $s \in R$,

$$
s \cdot(b r+a)=s b r+s a=b(s r)+(s a)
$$

because R is commutative. Since A is an ideal, $s a \in A$. Hence

$$
\mathrm{b}(\mathrm{sr})+(\mathrm{sa}) \in \mathrm{B}
$$

and B is an ideal of R. Also, for any $a \in A$,

$$
a=b \cdot 0+a \in B
$$

and

$$
b=b \cdot 1+0 \in B-A .
$$

Therefore B is indeed an ideal such that

$$
A \varsubsetneqq B \subseteq R .
$$

Corollary 5. In a commutative ring R with unity, every maximal ideal is prime.
Remark 6. The converse is not true, as we see in the following example.
Exercise. Show that the principal ideal (x) in $\mathbb{Z}[x]$ is prime but not maximal. Hint: Show that $(x)=\{f(x) \in \mathbb{Z}[x]: f(0)=0\}$.

