Matrices, transposes, and inverses

Math 40, Introduction to Linear Algebra
Wednesday, February 1, 2012

Matrix-vector multiplication: two views

- 1st perspective: \(A\vec{x} \) is linear combination of columns of \(A \)

\[
\begin{bmatrix}
1 & -2 & 3 \\
2 & 1 & 5 \\
\end{bmatrix}
\begin{bmatrix}
4 \\
3 \\
2 \\
\end{bmatrix}
= 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix}
= \begin{bmatrix} 4 \\ 21 \end{bmatrix}
\]

- 2nd perspective: \(A\vec{x} \) is computed as dot product of rows of \(A \) with vector \(\vec{x} \)

\[
\begin{bmatrix}
1 & -2 & 3 \\
2 & 1 & 5 \\
\end{bmatrix}
\begin{bmatrix}
4 \\
3 \\
2 \\
\end{bmatrix}
= \text{dot product of } \begin{bmatrix} 4 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}
= \begin{bmatrix} 4 \\ 21 \end{bmatrix}
\]

Notice that \# of columns of \(A = \# \) of rows of \(\vec{x} \).
This is a requirement in order for matrix multiplication to be defined.
Matrix multiplication

What sizes of matrices can be multiplied together?

For $m \times n$ matrix A and $n \times p$ matrix B, the matrix product AB is an $m \times p$ matrix.

If A is a square matrix and k is a positive integer, we define

$$A^k = A \cdot A \cdots A$$

k factors

Properties of matrix multiplication

Most of the properties that we expect to hold for matrix multiplication do....

$$A(B + C) = AB + AC$$

$$(AB)C = A(BC)$$

$k(AB) = (kA)B = A(kB)$ for scalar k

.... except commutativity!!

In general, $AB \neq BA$.
Matrix multiplication not commutative

Problems with hoping AB and BA are equal:

- BA may not be well-defined.

 (e.g., A is 2×3 matrix, B is 3×5 matrix)

- Even if AB and BA are both defined, AB and BA may not be the same size.

 (e.g., A is 2×3 matrix, B is 3×2 matrix)

- Even if AB and BA are both defined and of the same size, they still may not be equal.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \neq \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Truth or fiction?

Question 1 For $n \times n$ matrices A and B, is

$$A^2 - B^2 = (A - B)(A + B)$$

No!!

$$ (A - B)(A + B) = A^2 + \overbrace{AB - BA} - B^2 \neq 0 $$

Question 2 For $n \times n$ matrices A and B, is $(AB)^2 = A^2 B^2$?

No!!

$$(AB)^2 = ABAB \neq AABB = A^2 B^2$$
Matrix transpose

Definition The *transpose* of an $m \times n$ matrix A is the $n \times m$ matrix A^T obtained by interchanging rows and columns of A,

\[(A^T)_{ij} = A_{ji} \quad \forall \ i, j. \]

Example

\[
A = \begin{bmatrix}
1 & 3 & 5 & -2 \\
5 & 3 & 2 & 1
\end{bmatrix}
\]
\[
A^T = \begin{bmatrix}
1 & 5 \\
3 & 3 \\
5 & 2 \\
-2 & 1
\end{bmatrix}
\]

Transpose operation can be viewed as flipping entries about the diagonal.

Definition A square matrix A is *symmetric* if $A^T = A$.

Properties of transpose

(1) $(A^T)^T = A$

(2) $(A + B)^T = A^T + B^T$

(3) For a scalar c, $(cA)^T = cA^T$

(4) $(AB)^T = B^TA^T$

To prove this, we show that

\[
[(AB)^T]_{ij} = \\
\vdots = [(B^TA^T)]_{ij}
\]

Exercise

Prove that for any matrix A, $A^T A$ is symmetric.
Special matrices

Definition A matrix with all zero entries is called a *zero matrix* and is denoted 0.

\[
A = \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Definition A square matrix is *upper-triangular* if all entries below main diagonal are zero.

\[
A = \begin{bmatrix}
 2 & \frac{1}{4} & 5 \\
 0 & 6 & 0 \\
 0 & 0 & -3 \\
\end{bmatrix}
\]

Definition A square matrix is *lower-triangular* if all entries above main diagonal are zero.

Definition A square matrix whose off-diagonal entries are all zero is called a *diagonal matrix*.

\[
A = \begin{bmatrix}
 -\frac{3}{8} & 0 & 0 & 0 \\
 0 & -2 & 0 & 0 \\
 0 & 0 & -4 & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Definition The *identity matrix*, denoted \(I_n \), is the \(n \times n \) diagonal matrix with all ones on the diagonal.

\[
I_3 = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]

Identity matrix

Definition The *identity matrix*, denoted \(I_n \), is the \(n \times n \) diagonal matrix with all ones on the diagonal.

\[
I_3 = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]

Important property of identity matrix

If \(A \) is an \(m \times n \) matrix, then \(I_mA = A \) and \(AI_n = A \).

If \(A \) is a square matrix, then \(IA = A = AI \).
The notion of inverse

Exploration Consider the set of real numbers, and say that we have the equation

\[3x = 2 \]

and we want to solve for \(x \).

What do we do?

We multiply both sides of the equation by \(\frac{1}{3} \) to obtain

\[\frac{1}{3}(3x) = \frac{1}{3}(2) \quad \implies \quad x = \frac{2}{3}. \]

\(\frac{1}{3} \) is the multiplicative inverse of 3 since \(\frac{1}{3}(3) = 1 \).

Now, consider the linear system

\[
\begin{align*}
3x_1 - 5x_2 &= 6 \\
-2x_1 + 3x_2 &= -1
\end{align*}
\]

Notice that we can rewrite equations as

\[
\begin{pmatrix} 3 & -5 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}
\]

How do we isolate the vector \(\vec{x} \) by itself on LHS?

The notion of inverse

Now, consider the linear system

\[
\begin{align*}
3x_1 - 5x_2 &= 6 \\
-2x_1 + 3x_2 &= -1
\end{align*}
\]

Notice that we can rewrite equations as

\[
\begin{pmatrix} 3 & -5 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}
\]

How do we isolate the vector \(\vec{x} \) by itself on LHS?

want this equal to identity matrix, \(I \)

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -3 & -5 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 6 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ -9 \end{pmatrix}
\]
Matrix inverses

Definition A square matrix A is invertible (or nonsingular) if \exists matrix B such that $AB = I$ and $BA = I$. (We say B is an inverse of A.)

Example

$$A = \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix}$$ is invertible because for $B = \begin{bmatrix} 4 & -7 \\ -1 & 2 \end{bmatrix}$, we have $AB = \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 4 & -7 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$

and likewise $BA = \begin{bmatrix} 4 & -7 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$.

The notion of an inverse matrix only applies to square matrices.

- For rectangular matrices of full rank, there are one-sided inverses.
- For matrices in general, there are pseudoinverses, which are a generalization to matrix inverses.

Example Find the inverse of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. We have

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\implies a + c = 1 \text{ and } a + c = 0 \quad \text{IMPOSSIBLE!}$$

Therefore, $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not invertible (or singular).

Take-home message: Not all square matrices are invertible.
Important questions:

- When does a square matrix have an inverse?
- If it does have an inverse, how do we compute it?
- Can a matrix have more than one inverse?

Theorem. *If A is invertible, then its inverse is unique.*

Proof. Assume A is invertible. Suppose, by way of contradiction, that the inverse of A is not unique, i.e., let B and C be two distinct inverses of A. Then, by def’n of inverse, we have

$$BA = I = AB \quad (1)$$
$$\text{and } CA = I = AC. \quad (2)$$

It follows that

$$B = BI \quad \text{by def’n of identity matrix}$$
$$= B(AC) \quad \text{by (2) above}$$
$$= (BA)C \quad \text{by associativity of matrix mult.}$$
$$= IC \quad \text{by (1) above}$$
$$= C. \quad \text{by def’n of identity matrix}$$

Thus, $B = C$, which contradicts the previous assumption that $B \neq C$.
$\Rightarrow\Leftarrow$ So it must be that case that the inverse of A is unique.

Take-home message: The inverse of a matrix A is unique, and we denote it A^{-1}.

Theorem (Properties of matrix inverse).

(a) *If A is invertible, then A^{-1} is itself invertible and $(A^{-1})^{-1} = A.*
(b) If A is invertible and $c \neq 0$ is a scalar, then cA is invertible and $(cA)^{-1} = \frac{1}{c}A^{-1}$.

(c) If A and B are both $n \times n$ invertible matrices, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

“socks and shoes rule” – similar to transpose of AB

generalization to product of n matrices

(d) If A is invertible, then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

To prove (d), we need to show that there is some matrix ___ such that

___ $A^T = I$ and A^T ___ = I.

Proof of (d). Assume A is invertible. Then A^{-1} exists and we have

$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$

and

$A^T (A^{-1})^T = (A^{-1}A)^T = I^T = I$.

So A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. □

Question: If A and B are invertible $n \times n$ matrices, what can we say about $A + B$?

There is no guarantee $A + B$ is invertible even if A and B themselves are invertible! In other words, we CANNOT say that $(A + B)^{-1} = A^{-1} + B^{-1}$.

How do we compute the inverse of a matrix, if it exists?
Inverse of a 2×2 matrix: Consider the special case where A is a 2×2 matrix with $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and its inverse is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

★ Exercise: Check that $AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A^{-1}A$.

Example For $A = \begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix}$, we have

$$A^{-1} = \frac{1}{3} \begin{bmatrix} -3 & -1 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -\frac{1}{3} \\ -1 & -\frac{2}{3} \end{bmatrix}.$$ We can easily check that

$$AA^{-1} = \begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} -1 & -\frac{1}{3} \\ -1 & -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$A^{-1}A = \begin{bmatrix} -1 & -\frac{1}{3} \\ -1 & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$ How do we find inverses of matrices that are larger than 2×2 matrices?

Theorem. If some EROs reduce a square matrix A to the identity matrix I, then the same EROs transform I to A^{-1}.

$$\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\text{EROs}} \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

If we can transform A into I, then we will obtain A^{-1}. If we cannot do so, then A is not invertible.
Example: Find the inverse of the matrix $A = \begin{bmatrix} -1 & -3 & 1 \\ 3 & 6 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

$$
\begin{bmatrix}
-1 & -3 & 1 & \mid & 1 & 0 & 0 \\
3 & 6 & 0 & \mid & 0 & 1 & 0 \\
1 & 0 & 1 & \mid & 0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_2+3R_1}
\begin{bmatrix}
-1 & -3 & 1 & \mid & 1 & 0 & 0 \\
0 & -3 & 3 & \mid & 3 & 1 & 0 \\
0 & -3 & 2 & \mid & 1 & 0 & 1
\end{bmatrix}
\xrightarrow{R_3-R_1}
\begin{bmatrix}
1 & 3 & -1 & \mid & -1 & 0 & 0 \\
0 & -3 & 3 & \mid & 3 & 1 & 0 \\
0 & 0 & -1 & \mid & -2 & -1 & 1
\end{bmatrix}
\xrightarrow{R_3-R_2}
\begin{bmatrix}
1 & 0 & 2 & \mid & 2 & 1 & 0 \\
0 & -3 & 3 & \mid & 3 & 1 & 0 \\
0 & 0 & 1 & \mid & 2 & 1 & -1
\end{bmatrix}
\xrightarrow{R_1+R_2}
\begin{bmatrix}
1 & 0 & 2 & \mid & 2 & 1 & 0 \\
0 & 1 & -1 & \mid & -1 & -\frac{1}{3} & 0 \\
0 & 0 & 1 & \mid & 2 & 1 & -1
\end{bmatrix}
\xrightarrow{-\frac{1}{3}R_2}
\begin{bmatrix}
1 & 0 & 0 & \mid & -2 & -1 & 2 \\
0 & 1 & 0 & \mid & 1 & \frac{2}{3} & -1 \\
0 & 0 & 1 & \mid & 2 & 1 & -1
\end{bmatrix}
\xrightarrow{R_1-2R_3}
\xrightarrow{R_2+R_3}
\begin{bmatrix}
-2 & -1 & 2 \\
1 & 2 & -1 \\
2 & 1 & -1
\end{bmatrix}
\]

Thus, A is invertible and its inverse is

$$
A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ 1 & \frac{2}{3} & -1 \\ 2 & 1 & -1 \end{bmatrix}.
$$

Why does this work? \implies discussion next class