Matrix inverses

Recall...

Definition A square matrix A is invertible (or nonsingular) if \exists matrix B such that $AB = I$ and $BA = I$. (We say B is an inverse of A.)

Remark Not all square matrices are invertible.

Theorem. If A is invertible, then its inverse is unique.

Remark When A is invertible, we denote its inverse as A^{-1}.

Theorem. If A is an $n \times n$ invertible matrix, then the system of linear equations given by $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$.

Proof. Assume A is an invertible matrix. Then we have

$$A(A^{-1}\vec{b}) = (AA^{-1})\vec{b} = I\vec{b} = \vec{b}.$$

Thus, $\vec{x} = A^{-1}\vec{b}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose \vec{y} is another solution to the linear system. It follows that $A\vec{y} = \vec{b}$, but multiplying both sides by A^{-1} gives $\vec{y} = A^{-1}\vec{b} = \vec{x}$. □

Theorem (Properties of matrix inverse).

(a) If A is invertible, then A^{-1} is itself invertible and $(A^{-1})^{-1} = A$.

(b) If A is invertible and $c \neq 0$ is a scalar, then cA is invertible and $(cA)^{-1} = \frac{1}{c}A^{-1}$.

(c) If A and B are both $n \times n$ invertible matrices, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
“socks and shoes rule” – similar to transpose of AB

generalization to product of n matrices

(d) If A is invertible, then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

To prove (d), we need to show that the matrix B that satisfies $BA^T = I$ and $A^T B = I$ is $B = (A^{-1})^T$.

Proof of (d). Assume A is invertible. Then A^{-1} exists and we have

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$$

and

$$A^T (A^{-1})^T = (A^{-1}A)^T = I^T = I.$$
So A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. ■

Recall...

How do we compute the inverse of a matrix, if it exists?

Inverse of a 2×2 matrix: Consider the special case where A is a 2×2 matrix with $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and its inverse is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

How do we find inverses of matrices that are larger than 2×2 matrices?

Theorem. If some EROs reduce a square matrix A to the identity matrix I, then the same EROs transform I to A^{-1}.

$$\begin{bmatrix} A & I \end{bmatrix} \overset{\text{EROs}}{\rightarrow} \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

If we can transform A into I, then we will obtain A^{-1}. If we cannot do so, then A is not invertible.
Can we capture the effect of an ERO through matrix multiplication?

Definition An *elementary matrix* is any matrix obtained by doing an ERO on the identity matrix.

Examples

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[R_1 \leftrightarrow R_2\] on \(4 \times 4\) identity

\[
\begin{bmatrix}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[R_1 - 4R_3\] on \(3 \times 3\) identity

Notice that

\[
\begin{bmatrix}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} =
\begin{bmatrix}
a_{11} - 4a_{31} & a_{12} - 4a_{32} & a_{13} - 4a_{33} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

Left mult. of \(A\) by row vector is a linear comb. of rows of \(A\).

Remark An elementary matrix \(E\) is invertible and \(E^{-1}\) is elementary matrix corresponding to the “reverse” ERO of one associated with \(E\).

Example If \(E\) is 2nd elementary matrix above, then “reverse” ERO is \(R_1 + 4R_3\) and \(E^{-1} =
\begin{bmatrix}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}\).

Remark When finding \(A^{-1}\) using Gauss-Jordan elimination of \([A \mid I]\), if we keep track of EROs, and if \(E_1, E_2, \ldots, E_k\) are corresponding elem. matrices, then we have

\[E_k E_{k-1} \cdots E_1 A = I \implies A = E_1^{-1} \cdots E_{k-1}^{-1} E_k^{-1}.\]
Theorem (Fundamental Thm of Invertible Matrices). For an \(n \times n \) matrix, the following are equivalent:

1. \(A \) is invertible.
2. \(A\vec{x} = \vec{b} \) has a unique solution for any \(\vec{b} \in \mathbb{R}^n \).
3. \(A\vec{x} = \vec{0} \) has only the trivial solution \(\vec{x} = 0 \).
4. The RREF of \(A \) is \(I \).
5. \(A \) is product of elementary matrices.

Proof.

(1) \(\Rightarrow \) (2):
Proven in first theorem of today’s lecture

(2) \(\Rightarrow \) (3):
If \(A\vec{x} = \vec{b} \) has unique sol’n for any \(\vec{b} \in \mathbb{R}^n \), then in particular, \(A\vec{x} = \vec{0} \) has a unique sol’n. Since \(\vec{x} = 0 \) is a solution to \(A\vec{x} = \vec{0} \), it must be the unique one.

(3) \(\Rightarrow \) (4):
If \(A\vec{x} = \vec{0} \) has unique sol’n \(\vec{x} = 0 \), then augmented matrix has no free variables and a leading one in every column:

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0
\end{bmatrix}
\]

so RREF of \(A \) is \(I \).

(4) \(\Rightarrow \) (5):
\[E_k \cdots E_1 A = \text{RREF of } A = I\]
and elem. matrices are invertible
\[\Rightarrow \quad A = E_1^{-1} \cdots E_k^{-1} E_k^{-1}.
\]

(5) \(\Rightarrow \) (1):
Since \(A = E_k \cdots E_1 \) and \(E_i \) invertible \(\forall i \), \(A \) is product of invertible matrices so it is itself invertible.

\[\blacksquare\]
Theorem. Let A be a square matrix. If B is a square matrix such that either $AB = I$ or $BA = I$, then A is invertible and $B = A^{-1}$.

Proof. Suppose A, B are $n \times n$ matrices and that $BA = I$. Then consider the homogeneous system $A\vec{x} = \vec{0}$. We have

$$B(A\vec{x}) = B\vec{0} \quad \Rightarrow \quad (BA)\vec{x} = \vec{0} \quad \Rightarrow \quad \vec{x} = \vec{0}.$$

Since $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$, by the Fundamental Thm of Inverses, we have that A is invertible, i.e., A^{-1} exists. Thus,

$$(BA)A^{-1} = IA^{-1} \quad \Rightarrow \quad B(AA^{-1}) = A^{-1} \quad \Rightarrow \quad B = A^{-1}.$$

We leave the case of $AB = I$ as an exercise.

Definition The vectors $\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n \in \mathbb{R}^n$, where \vec{e}_i has a one in its ith component and zeros elsewhere, are called *standard unit vectors*.

Example The 4×4 identity matrix can be expressed as

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mid & \mid & \mid & \mid \\ \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \vec{e}_4 \end{bmatrix}$$

Theorem. If some EROs reduce a square matrix A to the identity matrix I, then the same EROs transform I to A^{-1}.

Why does this work?

Want to solve $AX = I$, with X unknown $n \times n$ matrix.
If $\vec{x}_1, \ldots, \vec{x}_n$ are columns of A, then want to solve n linear systems $A\vec{x}_1 = \vec{e}_1, \ldots, A\vec{x}_n = \vec{e}_n$. Can do so simultaneously using one “super-augmented matrix.”